Georgian Medicinal Plants as Rich Natural Sources of Antioxidant Derivatives: A Review on the Current Knowledge and Future Perspectives


Citar

Texto integral

Resumo

The study of antioxidants is of pivotal importance in biomedicine as these molecules could be involved in biological pathways associated with disease. The identification of new antioxidants together with the acquisition of a deeper knowledge on their biology, could lead to the use of these compounds as drugs for innovative treatments. Plants are an important reservoir of phytodrugs that in many cases can be isolated with good extraction yields directly from the vegetal source and are often endowed with a low toxicity profile. Georgia, a country situated on the Black Sea coast in the Caucasus region at the intersection of Western Asia and Eastern Europe, is renowned for its unique woodland habitats and immense biological diversity due to the great variety of climate zones and landscapes. Many wild plants in the area are used as remedies for a number of illnesses in the local traditional medicine. However, the scientific knowledge of these sources of natural drugs and of their molecular components is still far from exhaustive. Therefore, with the present work we reviewed the scientific literature on some of the main Georgian medicinal plants and found that several species are a valuable source of hydrophilic and hydrophobic antioxidants, endowed in some cases with a high ROS-scavenging ability. The analysis of the literature also demonstrated that most of the medicinal extracts and compounds isolated from these plants are beneficial in suppressing multiple diseases in vitro. This review will provide information for scientists looking to develop secure plant-based pharmaceuticals as well as a rationale for using Georgian medicinal plants for the treatment of a range of diseases.

Sobre autores

Marina Pirtskhalava

Rectorate of Geomedi University, Teaching University Geomedi, LLC

Email: info@benthamscience.net

Valentina Mittova

, Teaching University Geomedi, LLC

Email: info@benthamscience.net

Zurab Tsetskhladze

, Teaching Uaeaching University Geomedi, LLC,

Email: info@benthamscience.net

Rosanna Palumbo

Institute of Biostructures and Bioimaging, Area di Ricerca Site and Headquarters, Italian National Research Council (IBB-CNR)

Email: info@benthamscience.net

Raffaele Pastore

MSD R&D Innovation Centre, Merck (United Kingdom)

Email: info@benthamscience.net

Giovanni Roviello

Institute of Biostructures and Bioimaging, Area di Ricerca Site and Headquarters, Italian National Research Council (IBB-CNR)

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Bhatt, I.D.; Rawat, S.; Rawal, R.S. Antioxidants in Medicinal Plants. In: Biotechnology for Medicinal Plants; Chandra, S.; Lata, H.; Varma, A., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp. 295-326. doi: 10.1007/978-3-642-29974-2_13
  2. Ozkan, G.; Kamiloglu, S.; Ozdal, T.; Boyacioglu, D.; Capanoglu, E. Potential use of Turkish medicinal plants in the treatment of various diseases. Molecules, 2016, 21(3), 257. doi: 10.3390/molecules21030257 PMID: 26927038
  3. Miguel, M.G. Antioxidant activity of medicinal and aromatic plants. A review. Flavour Fragrance J., 2010, 25(5), 291-312. doi: 10.1002/ffj.1961
  4. Miller, J.S.; McCue, K.; Consiglio, T.; Stone, J.; Eristavi, M.; Sikharulidze, S.; Mikatadze-Pantsulaia, T.; Khutsishvili, M. Endemic Medicinal Plants of Georgia (Caucasus); Miller, J.S.; McCue, K.; Consiglio, T.; Stone, J.; Eristavi, M.; Sikharulidze, S.; Mikatadze-Pantsulaia, T.; Khutsishvili, M., Eds.; Missouri Botanical Garden Press: Illus, 2005, p. 45.
  5. Martkoplishvili, I.; Kvavadze, E. Some popular medicinal plants and diseases of the Upper Palaeolithic in Western Georgia. J. Ethnopharmacol., 2015, 166, 42-52. doi: 10.1016/j.jep.2015.03.003 PMID: 25769538
  6. Vicidomini, C.; Roviello, V.; Roviello, G.N. In silico investigation on the interaction of chiral phytochemicals from opuntia ficus-indica with SARS-CoV-2 Mpro. Symmetry, 2021, 13(6), 1041. doi: 10.3390/sym13061041
  7. Roviello, V.; Gilhen-Baker, M.; Vicidomini, C.; Roviello, G.N. Forest-bathing and physical activity as weapons against COVID-19: A review. Environ. Chem. Lett., 2022, 20(1), 131-140. doi: 10.1007/s10311-021-01321-9 PMID: 34566548
  8. Autiero, I.; Roviello, G.N. Interaction of laurusides 1 and 2 with the 3C-like protease (Mpro) from wild-type and omicron variant of SARS-CoV-2: A molecular dynamics study. Int. J. Mol. Sci., 2023, 24(6), 5511. doi: 10.3390/ijms24065511 PMID: 36982585
  9. Ricci, A.; Roviello, G.N. Exploring the protective effect of food drugs against viral diseases: Interaction of functional food ingredients and SARS-COV-2, influenza virus, and HSV. Life, 2023, 13(2), 402. doi: 10.3390/life13020402 PMID: 36836758
  10. Baker, S.; Gilhen-Baker, M.; Roviello, G.N. The role of nutrition and forest-bathing in the physical rehabilitation of physically inactive patients: from the molecular aspects to new nature-inspired techniques. Int. J. Environ. Res. Public Health, 2022, 20(1), 793. doi: 10.3390/ijerph20010793 PMID: 36613115
  11. Palumbo, R.; Omodei, D.; Vicidomini, C.; Roviello, G.N. Willardiine and its synthetic analogues: Biological aspects and implications in peptide chemistry of this nucleobase amino acid. Pharmaceuticals, 2022, 15(10), 1243. doi: 10.3390/ph15101243 PMID: 36297355
  12. Costanzo, V.; Gilhen-Baker, M.; Beresford-Kroeger, D.; Roviello, G.N. Tree-inhabiting polypore fungi as sources of a cornucopia of bioactive compounds. Future Microbiol., 2022, 17(12), 899-902. doi: 10.2217/fmb-2022-0098 PMID: 35694907
  13. Kikvidze, Z. Ethnobiology of Georgia; Ilia State University: Tbilisi, Georgia, 2020.
  14. Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 5th ed; Oxford University Press: Oxford, 2015. doi: 10.1093/acprof:oso/9780198717478.001.0001
  15. Halliwell, B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Am. J. Med., 1991, 91(3), S14-S22. doi: 10.1016/0002-9343(91)90279-7 PMID: 1928205
  16. Szőllősi Istvánné Varga, I.; Stajner, D. An evaluation of the antioxidant abilities of Allium species. Acta Biol. Szeged., 2003, 47(1–4), 103-106.
  17. Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects-A review. J. Funct. Foods, 2015, 18, 820-897. doi: 10.1016/j.jff.2015.06.018
  18. Paciolla, C.; Fortunato, S.; Dipierro, N.; Paradiso, A.; De Leonardis, S.; Mastropasqua, L.; de Pinto, M.C. Vitamin C in plants: From functions to biofortification. Antioxidants, 2019, 8(11), 519. doi: 10.3390/antiox8110519 PMID: 31671820
  19. Buettner, G.R.; Jurkiewicz, B.A. Catalytic metals, ascorbate and free radicals: Combinations to avoid. Radiat. Res., 1996, 145(5), 532-541. doi: 10.2307/3579271 PMID: 8619018
  20. Zechmann, B. Subcellular distribution of ascorbate in plants. Plant Signal. Behav., 2011, 6(3), 360-363. doi: 10.4161/psb.6.3.14342 PMID: 21350341
  21. Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, 49(1), 249-279. doi: 10.1146/annurev.arplant.49.1.249 PMID: 15012235
  22. Abaci, Z.T.; Zarifikhosroshahi, M.; Kafkas, E.; Sevindik, E. Chemical composition, volatiles, and antioxidant activity of Rosa iberica STEV. Hips. Acta Sci. Pol. Hortorum Cultus, 2016, 15(1), 41-54.
  23. Roman, I.; Stănilă, A.; Stănilă, S. Bioactive compounds and antioxidant activity of Rosa canina L. biotypes from spontaneous flora of Transylvania. Chem. Cent. J., 2013, 7(1), 73. doi: 10.1186/1752-153X-7-73 PMID: 23618509
  24. Ercisli, S. Chemical composition of fruits in some rose (Rosa spp.) species. Food Chem., 2007, 104(4), 1379-1384. doi: 10.1016/j.foodchem.2007.01.053
  25. Demir, N.; Yildiz, O.; Alpaslan, M.; Hayaloglu, A.A. Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. Lebensm. Wiss. Technol., 2014, 57(1), 126-133. doi: 10.1016/j.lwt.2013.12.038
  26. Bussmann, R.W.; Batsatsashvili, K.; Kikvidze, Z.; Ghorbani, A.; Khajoei Nasab, F.; Paniagua-Zambrana, N.Y.; Khutsishvili, M.; Maisaia, I.; Sikharulidze, S.; Tchelidze, D. Rosa canina L. Rosa pimpinellifolia Boiss. In: Ethnobotany of the Mountain Regions of Far Eastern Europe; Batsatsashvili, K.; Kikvidze, Z.; Bussmann, R., Eds.; Springer: Cham, 2020; pp. 815-822. doi: 10.1007/978-3-030-28940-9_118
  27. Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem., 2020, 44(9), e13394. doi: 10.1111/jfbc.13394 PMID: 32691460
  28. Robbins, R.J.; Bean, S.R. Development of a quantitative high-performance liquid chromatography–photodiode array detection measurement system for phenolic acids. J. Chromatogr. A, 2004, 1038(1-2), 97-105. doi: 10.1016/j.chroma.2004.03.009 PMID: 15233525
  29. Spiridon, I.; Nechita, C.; Niculaua, M.; Silion, M.; Armatu, A.; Teacă, C.A.; Bodîrlău, R. Antioxidant and chemical properties of Inula helenium root extracts. Open Chem., 2013, 11(10), 1699-1709. doi: 10.2478/s11532-013-0295-3
  30. Batsatsashvili, K.; Mehdiyeva, N.; Kikvidze, Z.; Khutsishvili, M.; Maisaia, I.; Sikharulidze, S.; Tchelidze, D.; Alizade, V.; Paniagua Zambrana, N.Y.; Bussmann, R.W. Inula Helenium L. Asteraceae. In: Ethnobotany of the Caucasus; Bussmann, R.W., Ed.; Springer International Publishing: Cham, 2016; pp. 1-5.
  31. Ketskhoveli, N.; Kharadze, A.; Gagnidze, R. Flora of Georgia; Tbilisi, 1971-2011, pp. 1-16.
  32. Nersezashvili, M.; Berashvili, D.; Skiba, A.; Skalicka-Wozniak, K.; Maciag, M.; Metreveli, M.; Widelski, J. Studying of potential anxiolytic activity of Angelica adzharica m. Pimen. methanolic extract. JECM, 2022, (7), 1-15. doi: 10.52340/jecm.2022.07.47
  33. Getia, M.; Mshvildadze, V.; Tabatadze, N.; Legault, J.; Pichette, A. Biological active compounds from Betula megrelica grown in Georgia. Int. J. Herb. Med., 2018, 6(4), 48-51.
  34. Vergun, O.; Brindza, J.; Rakhmetov, D. Total antioxidant activity of plants of Symphytum L. species. In: Agrobiodiversity for Improving Nutrition, Health and Life Quality; , 2020; pp. 488-492.
  35. Barbakadze, V.V.; Kemertelidze, E.P.; Mulkijanyan, K.G.; van den Berg, A.J.J.; Beukelman, C.J.; van den Worm, E.; Quarles van Ufford, H.C.; Usov, A.I. Antioxidant and anticomplement activity of poly3-(3,4-dihydroxyphenyl)glyceric acid from Symphytum asperum and Symphytum caucasicum plants. Pharm. Chem. J., 2007, 41(1), 14-16. doi: 10.1007/s11094-007-0004-7
  36. Batsatsashvili, K.; Mehdiyeva, N.; Fayvush, G.; Kikvidze, Z.; Khutsishvili, M.; Maisaia, I.; Sikharulidze, S.; Tchelidze, D.; Aleksanyan, A.; Alizade, V.; Paniagua Zambrana, N.Y.; Bussmann, R.W. Symphytum caucasicum M. Bieb., Boraginaceae. In: Ethnobotany of the Caucasus, 2016, pp. 1-6. doi: 10.1007/978-3-319-50009-6_61-1
  37. Beddiar, H.; Boudiba, S.; Benahmed, M.; Tamfu, A.N.; Ceylan, Ö.; Hanini, K.; Kucukaydin, S.; Elomri, A.; Bensouici, C.; Laouer, H.; Akkal, S.; Boudiba, L.; Dinica, R.M. Chemical composition, anti-quorum sensing, enzyme inhibitory, and antioxidant properties of phenolic extracts of Clinopodium nepeta L. Kuntze. Plants, 2021, 10(9), 1955. doi: 10.3390/plants10091955 PMID: 34579487
  38. Grossheim, A.A. Plant resources of the Caucasus; Publishing house of AS of Azerbaijani SSR: Baku, 1946.
  39. Mahomoodally, M.F.; Picot-Allain, M.C.N.; Zengin, G.; Llorent-Martínez, E.J.; Stefanucci, A.; Ak, G.; Senkardes, I.; Tomczyk, M.; Mollica, A. Chemical profiles and biological potential of tuber extracts from Cyclamen coum Mill. Biocatal. Agric. Biotechnol., 2021, 33, 102008. doi: 10.1016/j.bcab.2021.102008
  40. Debussche, M.; Garnier, E.; Thompson, J.D. Exploring the causes of variation in phenology and morphology in Mediterranean geophytes: A genus-wide study of Cyclamen. Bot. J. Linn. Soc., 2004, 145(4), 469-484. doi: 10.1111/j.1095-8339.2004.00298.x
  41. Kubczak, M.; Khassenova, A.B.; Skalski, B.; Michlewska, S.; Wielanek, M.; Aralbayeva, A.N.; Murzakhmetova, M.K.; Zamaraeva, M.; Skłodowska, M.; Bryszewska, M.; Ionov, M. Bioactive compounds and antiradical activity of the Rosa canina L. leaf and twig extracts. Agronomy, 2020, 10(12), 1897. doi: 10.3390/agronomy10121897
  42. Santos, T.N.; Costa, G.; Ferreira, J.P.; Liberal, J.; Francisco, V.; Paranhos, A.; Cruz, M.T.; Castelo-Branco, M.; Figueiredo, I.V.; Batista, M.T. Antioxidant, anti-inflammatory, and analgesic activities of Agrimonia eupatoria L. Infusion. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-13. doi: 10.1155/2017/8309894 PMID: 28491113
  43. Ivanova, D.; Vankova, D.; Nashar, M. Agrimonia eupatoria tea consumption in relation to markers of inflammation, oxidative status and lipid metabolism in healthy subjects. Arch. Physiol. Biochem., 2013, 119(1), 32-37. doi: 10.3109/13813455.2012.729844 PMID: 23078582
  44. Sukhikh, S.; Ivanova, S.; Skrypnik, L.; Bakhtiyarova, A.; Larina, V.; Krol, O.; Prosekov, A.; Frolov, A.; Povydysh, M.; Babich, O. Study of the antioxidant properties of Filipendula ulmaria and Alnus glutinosa. Plants, 2022, 11(18), 2415. doi: 10.3390/plants11182415 PMID: 36145820
  45. Mehdiyeva, N.P.; Alizade, V.M.; Batsatsashvili, K.; Kikvidze, Z.; Khutsishvili, M.; Maisaia, I.; Sikharulidze, S.; Tchelidze, D.; Zambrana, N.Y.P.; Bussmann, R.W. Filipendula ulmaria (L.) Maxim. Rosaceae. In: Ethnobotany of the Caucasus; Bussmann, R.W., Ed.; Springer International Publishing: Cham, 2017; pp. 305-308. doi: 10.1007/978-3-319-49412-8_74
  46. Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci., 2012, 196, 67-76. doi: 10.1016/j.plantsci.2012.07.014 PMID: 23017900
  47. Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem., 2022, 383, 132531. doi: 10.1016/j.foodchem.2022.132531 PMID: 35413752
  48. Sarian, M.N.; Ahmed, Q.U.; Mat So’ad, S.Z.; Alhassan, A.M.; Murugesu, S.; Perumal, V.; Syed Mohamad, S.N.A.; Khatib, A.; Latip, J. Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. BioMed Res. Int., 2017, 2017, 1-14. doi: 10.1155/2017/8386065 PMID: 29318154
  49. Zeng, Y.; Song, J.; Zhang, M.; Wang, H.; Zhang, Y.; Suo, H. Comparison of in vitro and in vivo antioxidant activities of six flavonoids with similar structures. Antioxidants, 2020, 9(8), 732. doi: 10.3390/antiox9080732 PMID: 32796543
  50. Arif, H.; Sohail, A.; Farhan, M.; Rehman, A.A.; Ahmad, A.; Hadi, S.M. Flavonoids-induced redox cycling of copper ions leads to generation of reactive oxygen species: A potential role in cancer chemoprevention. Int. J. Biol. Macromol., 2018, 106, 569-578. doi: 10.1016/j.ijbiomac.2017.08.049 PMID: 28834706
  51. Cherrak, S.A.; Mokhtari-Soulimane, N.; Berroukeche, F.; Bensenane, B.; Cherbonnel, A.; Merzouk, H.; Elhabiri, M. In vitro antioxidant versus metal ion chelating properties of flavonoids: A structure-activity investigation. PLoS One, 2016, 11(10), e0165575. doi: 10.1371/journal.pone.0165575 PMID: 27788249
  52. Süzgeç-Selçuk, S.; Birteksöz, A.S. Flavonoids of Helichrysum chasmolycicum and its antioxidant and antimicrobial activities. S. Afr. J. Bot., 2011, 77(1), 170-174. doi: 10.1016/j.sajb.2010.07.017
  53. Dincer, C.; Topuz, A.; Sahin-Nadeem, H.; Ozdemir, K.S.; Cam, I.B.; Tontul, I.; Gokturk, R.S.; Ay, S.T. A comparative study on phenolic composition, antioxidant activity and essential oil content of wild and cultivated sage (Salvia fruticosa Miller) as influenced by storage. Ind. Crops Prod., 2012, 39, 170-176. doi: 10.1016/j.indcrop.2012.02.032
  54. Li, X.; Wang, X.; Li, C.; Khutsishvili, M.; Fayvush, G.; Atha, D.; Zhang, Y.; Borris, R.P. Unusual flavones from Primula macrocalyx as inhibitors of OAT1 and OAT3 and as antifungal agents against Candida rugosa. Sci. Rep., 2019, 9(1), 9230. doi: 10.1038/s41598-019-45728-5 PMID: 31239507
  55. Huzio, N.; Grytsyk, A.; Raal, A.; Grytsyk, L.; Koshovyi, O. Phytochemical and pharmacological research in Agrimonia Eupatoria L. herb extract with anti-inflammatory and hepatoprotective properties. Plants, 2022, 11(18), 2371. doi: 10.3390/plants11182371 PMID: 36145771
  56. Carotenoids: Physical, Chemical, and Biological Functions and Properties, 1st ed; Landrum, J.T., Ed.; CRC Press: Boca Raton, 2009. doi: 10.1201/9781420052312
  57. Sun, T.; Rao, S.; Zhou, X.; Li, L. Plant carotenoids: Recent advances and future perspectives. Molecular Horticulture, 2022, 2(1), 3. doi: 10.1186/s43897-022-00023-2 PMID: 37789426
  58. Carotenoids; Britton, G.; Liaaen-Jensen, S.; Pfander, H., Eds.; Springer: Basel, 2008.
  59. Maoka, T. Carotenoids as natural functional pigments. J. Nat. Med., 2020, 74(1), 1-16. doi: 10.1007/s11418-019-01364-x PMID: 31588965
  60. Fiedor, J.; Burda, K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 2014, 6(2), 466-488. doi: 10.3390/nu6020466 PMID: 24473231
  61. Ghazghazi, M.; Miguel, M.G.; Hasnaoui, B.; Sebei, H.; Ksontini, M.; Figueiredo, A.C.; Pedro, L.G.; Barroso, J.G. Phenols, essential oils and carotenoids of Rosa canina from Tunisia and their antioxidant activities. Afr. J. Biotechnol., 2010, 9(18), 2709-2716.
  62. Yamauchi, R.; Matsushita, S. Quenching effect of tocopherols on the methyl linoleate photooxidation and their oxidation products. Agric. Biol. Chem., 1977, 41(8), 1425-1430. doi: 10.1080/00021369.1977.10862693
  63. Barouh, N.; Bourlieu-Lacanal, C.; Figueroa-Espinoza, M.C.; Durand, E.; Villeneuve, P. Tocopherols as antioxidants in lipid-based systems: The combination of chemical and physicochemical interactions determines their efficiency. Compr. Rev. Food Sci. Food Saf., 2022, 21(1), 642-688. doi: 10.1111/1541-4337.12867 PMID: 34889039
  64. Al-Yafeai, A.; Bellstedt, P.; Böhm, V. Bioactive compounds and antioxidant capacity of Rosa rugosa depending on degree of ripeness. Antioxidants, 2018, 7(10), 134. doi: 10.3390/antiox7100134 PMID: 30282929
  65. Tiong, S.; Looi, C.; Hazni, H.; Arya, A.; Paydar, M.; Wong, W.; Cheah, S.C.; Mustafa, M.; Awang, K. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules, 2013, 18(8), 9770-9784. doi: 10.3390/molecules18089770 PMID: 23955322
  66. Masyita, A.; Mustika Sari, R.; Dwi Astuti, A.; Yasir, B.; Rahma Rumata, N.; Emran, T.B.; Nainu, F.; Simal-Gandara, J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem. X, 2022, 13, 100217. doi: 10.1016/j.fochx.2022.100217 PMID: 35498985
  67. Chen, Y.; Miao, Y.; Huang, L.; Li, J.; Sun, H.; Zhao, Y.; Yang, J.; Zhou, W. Antioxidant activities of saponins extracted from Radix Trichosanthis: An in vivo and in vitro evaluation. BMC Complement. Altern. Med., 2014, 14(1), 86. doi: 10.1186/1472-6882-14-86 PMID: 24597831
  68. Khan, M.; Karima, G.; Khan, M.; Shin, J.; Kim, J. Therapeutic effects of saponins for the prevention and treatment of cancer by ameliorating inflammation and angiogenesis and inducing antioxidant and apoptotic effects in human cells. Int. J. Mol. Sci., 2022, 23(18), 10665. doi: 10.3390/ijms231810665 PMID: 36142578
  69. Emir, C.; Emir, A.; Bozkurt, B.; Somer, N.U. Phytochemical constituents from Galanthus alpinus Sosn. var. alpinus and their anticholinesterase activities. S. Afr. J. Bot., 2019, 121, 63-67. doi: 10.1016/j.sajb.2018.10.021
  70. Jokhadze, M.; Kuchukhidze, J.; Adeishvili, L.; Makharadze, R. Bioactive alkaloids from Georgian Amaryllidaceae Proceedings of the VII National Congress of Pharmacists of Ukraine, Kharkiv, Ukraine, September 15-17, 2010, p. 216.
  71. Kemularia-Natadze, J.M. Study of Caucasian species from genus Galanthus L. Works BIN AN GSSR, 1947, 13, 24-29.
  72. Zonneveld, B.J.M.; Grimshaw, J.M.; Davis, A.P. The systematic value of nuclear DNA content in Galanthus. Plant Syst. Evol., 2003, 241(1-2), 89-102. doi: 10.1007/s00606-003-0016-z
  73. Sirotyuk, E.; Shadge, A.; Gunina, G. Distribution and variability of morphoparameters of species of the genus Galanthus L. in the Republic of Adygea. Russ. J. Earth Sci., 2022, 5, 1-6. doi: 10.2205/2022ES01SI09
  74. Şöhretoğlu, D.; Gença, Y.; Harput, Ü.Ş.; Sabuncuoğlub, S.; Šoralc, M.; Rendad, G.; Liptaj, T. Phytochemical content, antioxidant and cytotoxic activities of Sedum spurium. Nat. Prod. Commun., 2016, 11(11), 1934578X1601101. doi: 10.1177/1934578X1601101117 PMID: 30475509
  75. Batsatsashvili, K.; Mehdiyeva, N.P.; Kikvidze, Z.; Khutsishvili, M.; Maisaia, I.; Sikharulidze, S.; Tchelidze, D.; Alizade, V.M.; Zambrana, N.Y.P.; Bussmann, R.W. Sedum caucasicum (Grossh.) Boriss. Sedum spurium M. Bieb. Crassulaceae. In: Ethnobotany of the Caucasus; , 2017; pp. 635-640. doi: 10.1007/978-3-319-49412-8_128
  76. Younessi-Hamzekhanlu, M.; Sanjari, S.; Dejahang, A.; Karkaj, E.S.; Nojadeh, M.S.; Gönenç, T.M.; Ozturk, M. Evaluation of essential oil from different Artemisia fragrans Willd. populations: chemical composition, antioxidant, and antibacterial activity. J. Essent. Oil-Bear. Plants, 2020, 23(6), 1218-1236. doi: 10.1080/0972060X.2020.1854129
  77. Shafaghat, A.; Noormohammadi, Y.; Zaifizadeh, M. Composition and antibacterial activity of essential oils of Artemisia fragrans Willd. leaves and roots from Iran. Nat. Prod. Commun., 2009, 4(2), 1-4. doi: 10.1177/1934578X0900400223 PMID: 19370939
  78. Batsatsashvili, K.; Mehdiyeva, N.P.; Fayvush, G.; Kikvidze, Z.; Khutsishvili, M.; Maisaia, I.; Sikharulidze, S.; Tchelidze, D.; Aleksanyan, A.; Alizade, V.M.; Zambrana, N.Y.P.; Bussmann, R.W. Artemisia annua L. Artemisia fragrans Willd. Asteraceae. In: Ethnobotany of the Caucasus; Bussmann, R.W., Ed.; Springer International Publishing: Cham, 2017; pp. 117-122. doi: 10.1007/978-3-319-49412-8_127
  79. Mohammadi, M.; Yousefi, M.; Habibi, Z.; Dastan, D. Chemical composition and antioxidant activity of the essential oil of aerial parts of Petasites albus from Iran: A good natural source of euparin. Nat. Prod. Res., 2012, 26(4), 291-297. doi: 10.1080/14786410903374819 PMID: 21416453
  80. Getia, M.; Korkotadze, T.; Moshiashvili, G.; Tabatadze, N.; Legault, J.; Mshvildadze, V. Composition and cytotoxicity of essential oils from aerial parts of Thymus tiflisiensis and T. collinus growing in Georgia. Chem. Nat. Compd., 2022, 58(5), 959-961. doi: 10.1007/s10600-022-03840-5
  81. Öztürk, G.; Yilmaz, G.; Ekşi̇, G.; Demi̇Rci̇, B. Chemical composition and antibacterial activity of Clinopodium nepeta subsp. glandulosum (Req.) Govaerts essential oil. Nat. Volatiles Essent., 2021, 8(3), 75-80. doi: 10.37929/nveo.949959
  82. Khazaei, S.; Abdul Hamid, R.; Ramachandran, V.; Mohd Esa, N.; Pandurangan, A.K.; Danazadeh, F.; Ismail, P. Cytotoxicity and proapoptotic effects of Allium atroviolaceum flower extract by modulating cell cycle arrest and caspase-dependent and P53 -independent pathway in breast cancer cell lines. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-16. doi: 10.1155/2017/1468957 PMID: 29250124
  83. Jgerenaia, G.; Frederich, M.; Mskhiladze, L. Phytochemical and pharmacological review of Allium species from Georgia. Sys. Rev. Pharm., 2022, 13(5), 543-549.
  84. Hosseini, A.; Shahrani, M.; Asgharian, S.; Anjomshoa, M.; Rostamzadeh, A.; Lorigooini, Z.; Asgharzadeh, N.; Azari, A. Ameliorative effect of Allium atroviolaceum on sperm quality in cyclophosphamide-treated mice. Future J. Pharm. Sci, 2021, 7(1), 82. doi: 10.1186/s43094-021-00234-2
  85. Ghasemi, S.; Lorigooini, Z.; Wibowo, J.; Amini-khoei, H. Tricin isolated from Allium atroviolaceum potentiated the effect of docetaxel on PC3 cell proliferation: Role of miR-21. Nat. Prod. Res., 2019, 33(12), 1828-1831. doi: 10.1080/14786419.2018.1437439 PMID: 29447469
  86. Bokov DO, B.; Krasikova MK, K.; Sergunova EV, S.; Bobkova NV, B.; Kovaleva TYu, K.; Bondar AA, B.; Marakhova AI, M.; Morokhina SL, M.; Krasnyuk, K., II; Moiseev DV, M. Pharmacognostic, phytochemical and ethnopharmacological potential of cyclamen coum mill. Pharmacogn. J., 2020, 12(1), 204-212. doi: 10.5530/pj.2020.12.31
  87. Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process., 2011, 89(3), 217-233. doi: 10.1016/j.fbp.2010.04.008
  88. Sielicka, M.; Małecka, M.; Purłan, M. Comparison of the antioxidant capacity of lipid-soluble compounds in selected cold-pressed oils using photochemiluminescence assay (PCL) and DPPH method. Eur. J. Lipid Sci. Technol., 2014, 116(4), 388-394. doi: 10.1002/ejlt.201300356
  89. Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem., 2005, 53(10), 4290-4302. doi: 10.1021/jf0502698 PMID: 15884874
  90. Opitz, S.E.W.; Smrke, S.; Goodman, B.A.; Yeretzian, C. Methodology for the measurement of antioxidant capacity of coffee. Processing and Impact on Antioxidants in Beverages; Elsevier, 2014, pp. 253-264. doi: 10.1016/B978-0-12-404738-9.00026-X
  91. Fernandes, R.P.P.; Trindade, M.A.; Tonin, F.G.; Lima, C.G.; Pugine, S.M.P.; Munekata, P.E.S.; Lorenzo, J.M.; de Melo, M.P. Evaluation of antioxidant capacity of 13 plant extracts by three different methods: cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. J. Food Sci. Technol., 2016, 53(1), 451-460. doi: 10.1007/s13197-015-1994-x PMID: 26787964
  92. Alfadda, A.A.; Sallam, R.M. Reactive oxygen species in health and disease. J. Biomed. Biotechnol., 2012, 2012, 1-14. doi: 10.1155/2012/936486 PMID: 22927725
  93. Salminen, A.; Kaarniranta, K.; Kauppinen, A. Inflammaging: Disturbed interplay between autophagy and inflammasomes. Aging, 2012, 4(3), 166-175. doi: 10.18632/aging.100444 PMID: 22411934
  94. Feng, H.; Xiang, H.; Zhang, J.; Liu, G.; Guo, N.; Wang, X.; Wu, X.; Deng, X.; Yu, L. Genome-wide transcriptional profiling of the response of Staphylococcus aureus to cryptotanshinone. J. Biomed. Biotechnol., 2009, 2009, 1-8. doi: 10.1155/2009/617509 PMID: 19707532
  95. Schwarz, K.B. Oxidative stress during viral infection: A review. Free Radic. Biol. Med., 1996, 21(5), 641-649. doi: 10.1016/0891-5849(96)00131-1 PMID: 8891667
  96. Mishra, A.; Sharma, A.K.; Kumar, S.; Saxena, A.K.; Pandey, A.K. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities. BioMed Res. Int., 2013, 2013, 1-10. doi: 10.1155/2013/915436 PMID: 24093108
  97. Agarwala, M.; Yadav, R. Phytochemical analysis of some medicinal plants. J. Phytol., 2011, 3(12), 10-14.
  98. Christenhusz, M.J.M.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa, 2016, 261(3), 201. doi: 10.11646/phytotaxa.261.3.1
  99. Halliwell, B. Drug antioxidant effects. A basis for drug selection? Drugs, 1991, 42(4), 569-605. doi: 10.2165/00003495-199142040-00003 PMID: 1723362
  100. Mahase, E. Cancer overtakes CVD to become leading cause of death in high income countries. BMJ, 2019, 366, l5368. doi: 10.1136/bmj.l5368 PMID: 31481521
  101. Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative stress in cancer. Cancer Cell, 2020, 38(2), 167-197. doi: 10.1016/j.ccell.2020.06.001 PMID: 32649885
  102. Cragg, G.M.; Boyd, M.R.; Cardellina, J.H.; Newman, D.J.; Snader, K.M.; McCloud, T.G. Ethnobotany and Drug Discovery: The Experience of the US National Cancer Institute. In: Novartis Foundation Symposia; Chadwick, D.J.; Marsh, J., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2007; pp. 178-196.
  103. Jiménez, S.; Gascón, S.; Luquin, A.; Laguna, M.; Ancin-Azpilicueta, C.; Rodríguez-Yoldi, M.J. Rosa canina Extracts have antiproliferative and antioxidant effects on Caco-2 human colon cancer. PLoS One, 2016, 11(7), e0159136. doi: 10.1371/journal.pone.0159136 PMID: 27467555
  104. Yildiz, M.; Bozcu, H.; Tokgun, O.; Karagur, E.R.; Akyurt, O.; Akca, H. Cyclamen exerts cytotoxicity in solid tumor cell lines: A step toward new anticancer agents? Asian Pac. J. Cancer Prev., 2013, 14(10), 5911-5913. doi: 10.7314/APJCP.2013.14.10.5911 PMID: 24289599
  105. Amin Jaradat, N.; Al-Masri, M.; Hussen, F.; Zaid, A.N.; Ali, I.; Tammam, A.; Mostafa Odeh, D.; Hussein Shakarneh, O.; Rajabi, A. Preliminary phytochemical and biological screening of cyclamen coum a member of Palestinian flora. Ulum-i Daruyi, 2017, 23(3), 231-237. doi: 10.15171/PS.2017.34
  106. Fialho, L.; Cunha-e-Silva, J.A.; Santa-Maria, A.F.; Madureira, F.A.; Iglesias, A.C. Comparative study of systemic early postoperative inflammatory response among elderly and non-elderly patients undergoing laparoscopic cholecystectomy. Rev. Col. Bras. Cir., 2018, 45(1), e1586. doi: 10.1590/0100-6991e-20181586 PMID: 29590237
  107. Jang, C.H.; Kim, Y.Y.; Seong, J.Y.; Kang, S.H.; Jung, E.K.; Sung, C.M.; Kim, S.B.; Cho, Y.B. Clinical characteristics of pediatric external auditory canal cholesteatoma. Int. J. Pediatr. Otorhinolaryngol., 2016, 87, 5-10. doi: 10.1016/j.ijporl.2016.05.029 PMID: 27368435
  108. Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev., 2016, 2016, 1-9. doi: 10.1155/2016/7432797 PMID: 27738491
  109. Nunes, C.R.; Barreto Arantes, M.; Menezes de Faria Pereira, S.; Leandro da Cruz, L.; de Souza Passos, M.; Pereira de Moraes, L.; Vieira, I.J.C.; Barros de Oliveira, D. Plants as sources of anti-inflammatory agents. Molecules, 2020, 25(16), 3726. doi: 10.3390/molecules25163726 PMID: 32824133
  110. Saaby, L.; Jäger, A.K.; Moesby, L.; Hansen, E.W.; Christensen, S.B. Isolation of immunomodulatory triterpene acids from a standardized rose hip powder (Rosa canina L.). Phytother. Res., 2011, 25(2), 195-201. doi: 10.1002/ptr.3241 PMID: 20632303
  111. Schwager, J.; Hoeller, U.; Wolfram, S.; Richard, N. Rose hip and its constituent galactolipids confer cartilage protection by modulating cytokine, and chemokine expression. BMC Complement. Altern. Med., 2011, 11(1), 105. doi: 10.1186/1472-6882-11-105 PMID: 22051322
  112. Mindadze, N. Traditional medicinal culture of Georgian people; Ilia State University: Tbilisi, Georgia, 2013.
  113. Mihajilov-Krstev, T.; Jovanović, B.; Zlatković, B.; Matejić, J.; Vitorović, J.; Cvetković, V.; Ilić, B.; Đorđević, L.; Joković, N.; Miladinović, D.; Jakšić, T.; Stanković, N.; Stankov Jovanović, V.; Bernstein, N. Phytochemistry, toxicology and therapeutic value of Petasites hybridus subsp. ochroleucus (common butterbur) from the Balkans. Plants, 2020, 9(6), 700. doi: 10.3390/plants9060700 PMID: 32486467
  114. Rawat, M.; Parmar, N. Medicinal plants with antidiabetic potential-a review. Am.-Eurasian J. Agric. Environ. Sci., 2013, 13(1), 81-94.
  115. Nishikawa, T.; Edelstein, D.; Du, X.L.; Yamagishi, S.; Matsumura, T.; Kaneda, Y.; Yorek, M.A.; Beebe, D.; Oates, P.J.; Hammes, H.P.; Giardino, I.; Brownlee, M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 2000, 404(6779), 787-790. doi: 10.1038/35008121 PMID: 10783895
  116. Yung, L.; Leung, F.; Yao, X.; Chen, Z.Y.; Huang, Y. Reactive oxygen species in vascular wall. Cardiovasc. Hematol. Disord. Drug Targets, 2006, 6(1), 1-19. doi: 10.2174/187152906776092659 PMID: 16724932
  117. Bajaj, S.; Khan, A. Antioxidants and diabetes. Indian J. Endocrinol. Metab., 2012, 16(8)(Suppl. 2), 267. doi: 10.4103/2230-8210.104057 PMID: 23565396
  118. Aslan, M.; Orhan, N.; Orhan, D.D.; Ergun, F. Hypoglycemic activity and antioxidant potential of some medicinal plants traditionally used in Turkey for diabetes. J. Ethnopharmacol., 2010, 128(2), 384-389. doi: 10.1016/j.jep.2010.01.040 PMID: 20100559
  119. Gray, A.M.; Flatt, P.R. Actions of the traditional anti-diabetic plant, Agrimony eupatoria (agrimony): Effects on hyperglycaemia, cellular glucose metabolism and insulin secretion. Br. J. Nutr., 1998, 80(1), 109-114. doi: 10.1017/S0007114598001834 PMID: 9797650
  120. Duff, M.; Demidova, O.; Blackburn, S.; Shubrook, J. Cutaneous manifestations of diabetes mellitus. Clin. Diabetes, 2015, 33(1), 40-48. doi: 10.2337/diaclin.33.1.40 PMID: 25653473
  121. Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 403-425. doi: 10.1080/14756366.2016.1256882 PMID: 28097901
  122. Antimicrobial Resistance. 2014. Available From:https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
  123. Shankar, S.R.; Rangarajan, R.; Sarada, D.V.L.; Kumar, C.S. Evaluation of antibacterial activity and phytochemical screening of Wrightia tinctoria L. Pharmacogn. J., 2010, 2(14), 19-22. doi: 10.1016/S0975-3575(10)80066-5
  124. Ghosh, M.D.; Golageri, D.B.; Sandaruwan, W.K.S.; Vishnu, J.; Rachel, S. Phytochemical Screening, in-vitro evaluation of antioxidant and antibacterial efficacy of methanolic leaf extract of Clinopodium nepeta (L.) Kuntze. Int. J. Pharm. Sci. Res., 2020, 11(12), 6463-6469.
  125. Genebashvili, M. Medicinal Forest Plants of the Caucasus, Recreational and Sightseeing Zones of Georgia; Georgian Academy of Sciences: Tbilisi, Georgia, 1992.
  126. Muruzović, M.Ž.; Mladenović, K.G.; Stefanović, O.D.; Vasić, S.M.; Čomić, L.R. Extracts of Agrimonia eupatoria L. as sources of biologically active compounds and evaluation of their antioxidant, antimicrobial, and antibiofilm activities. J. Food Drug Anal., 2016, 24(3), 539-547. doi: 10.1016/j.jfda.2016.02.007 PMID: 28911559
  127. Cwikla, C.; Schmidt, K.; Matthias, A.; Bone, K.M.; Lehmann, R.; Tiralongo, E. Investigations into the antibacterial activities of phytotherapeutics against Helicobacter pylori and Campylobacter jejuni. Phytother. Res., 2010, 24(5), 649-656. doi: 10.1002/ptr.2933 PMID: 19653313
  128. Kwon, D.H.; Kwon, H.Y.; Kim, H.J.; Chang, E.J.; Kim, M.B.; Yoon, S.K.; Song, E.Y.; Yoon, D.Y.; Lee, Y.H.; Choi, I.S.; Choi, Y.K. Inhibition of hepatitis B virus by an aqueous extract of Agrimonia eupatoria L. Phytother. Res., 2005, 19(4), 355-358. doi: 10.1002/ptr.1689 PMID: 16041735
  129. Shengelia, Z. The culture of medicinal plants in Georgia; Sabchota Sakartvelo: Tbilisi, 1983.
  130. Abdi Ali, A.; Shafiei, M.; Shahcheraghi, F.; Saboora, A.; Ghazanfari, T. The study of synergistic effects of n. butanolic Cyclamen coum extract and ciprofloxacin on inhibition of Pseudomonas aeruginosa biofilm formation. BJM, 2015, 3(12), 25-32.
  131. Paluch, Z.; Biriczová, L.; Pallag, G.; Carvalheiro Marques, E.; Vargová, N.; Kmoníčková, E. The therapeutic effects of Agrimonia eupatoria L. Physiol. Res., 2020, 69(Suppl. 4), S555-S571. doi: 10.33549/physiolres.934641 PMID: 33646008

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024