The Impact of Alcohol-Induced Epigenetic Modifications in the Treatment of Alcohol use Disorders
- Авторлар: Fanfarillo F.1, Ferraguti G.1, Lucarelli M.1, Fuso A.1, Ceccanti M.2, Terracina S.1, Micangeli G.3, Tarani L.3, Fiore M.4
-
Мекемелер:
- Department of Experimental Medicine, Sapienza University of Rome
- SITAC, Sapienza University of Rome
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome
- Sapienza University, IBBC-CNR
- Шығарылым: Том 31, № 36 (2024)
- Беттер: 5837-5855
- Бөлім: Anti-Infectives and Infectious Diseases
- URL: https://medjrf.com/0929-8673/article/view/645245
- DOI: https://doi.org/10.2174/0109298673256937231004093143
- ID: 645245
Дәйексөз келтіру
Толық мәтін
Аннотация
:Alcohol use disorders are responsible for 5.9% of all death annually and 5.1% of the global disease burden. It has been suggested that alcohol abuse can modify gene expression through epigenetic processes, namely DNA and histone methylation, histone acetylation, and microRNA expression. The alcohol influence on epigenetic mechanisms leads to molecular adaptation of a wide number of brain circuits, including the hypothalamus-hypophysis-adrenal axis, the prefrontal cortex, the mesolimbic-dopamine pathways and the endogenous opioid pathways. Epigenetic regulation represents an important level of alcohol-induced molecular adaptation in the brain. It has been demonstrated that acute and chronic alcohol exposure can induce opposite modifications in epigenetic mechanisms: acute alcohol exposure increases histone acetylation, decreases histone methylation and inhibits DNA methyltransferase activity, while chronic alcohol exposure induces hypermethylation of DNA. Some studies investigated the chromatin status during the withdrawal period and the craving period and showed that craving was associated with low methylation status, while the withdrawal period was associated with elevated activity of histone deacetylase and decreased histone acetylation. Given the effects exerted by ethanol consumption on epigenetic mechanisms, chromatin structure modifiers, such as histone deacetylase inhibitors and DNA methyltransferase inhibitors, might represent a new potential strategy to treat alcohol use disorder. Further investigations on molecular modifications induced by ethanol might be helpful to develop new therapies for alcoholism and drug addiction targeting epigenetic processes.
Негізгі сөздер
Авторлар туралы
Francesca Fanfarillo
Department of Experimental Medicine, Sapienza University of Rome
Email: info@benthamscience.net
Giampiero Ferraguti
Department of Experimental Medicine, Sapienza University of Rome
Email: info@benthamscience.net
Marco Lucarelli
Department of Experimental Medicine, Sapienza University of Rome
Email: info@benthamscience.net
Andrea Fuso
Department of Experimental Medicine, Sapienza University of Rome
Email: info@benthamscience.net
Mauro Ceccanti
SITAC, Sapienza University of Rome
Email: info@benthamscience.net
Sergio Terracina
Department of Experimental Medicine, Sapienza University of Rome
Email: info@benthamscience.net
Ginevra Micangeli
Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome
Email: info@benthamscience.net
Luigi Tarani
Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome
Email: info@benthamscience.net
Marco Fiore
Sapienza University, IBBC-CNR
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- Grant, B.F.; Goldstein, R.B.; Saha, T.D.; Chou, S.P.; Jung, J.; Zhang, H.; Pickering, R.P.; Ruan, W.J.; Smith, S.M.; Huang, B.; Hasin, D.S. Epidemiology of DSM-5 alcohol use disorder. JAMA Psychiatry, 2015, 72(8), 757-766. doi: 10.1001/jamapsychiatry.2015.0584 PMID: 26039070
- Degenhardt, L.; Charlson, F.; Ferrari, A.; Santomauro, D.; Erskine, H.; Mantilla-Herrara, A.; Whiteford, H.; Leung, J.; Naghavi, M.; Griswold, M.; Rehm, J.; Hall, W.; Sartorius, B.; Scott, J.; Vollset, S.E.; Knudsen, A.K.; Haro, J.M.; Patton, G.; Kopec, J.; Carvalho Malta, D.; Topor-Madry, R.; McGrath, J.; Haagsma, J.; Allebeck, P.; Phillips, M.; Salomon, J.; Hay, S.; Foreman, K.; Lim, S.; Mokdad, A.; Smith, M.; Gakidou, E.; Murray, C.; Vos, T. The global burden of disease attributable to alcohol and drug use in 195 countries and territories, 19902016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Psychiatry, 2018, 5(12), 987-1012. doi: 10.1016/S2215-0366(18)30337-7 PMID: 30392731
- World Health Organisation. Global status report on alcohol and health , Available from: http://apps.who.int/iris/ bitstream/handle/10665/44499/9789241564151_eng.pdf;jsessionid=CAF1A0F5B0BA981C2CEDBAC6BD4EC 10C?sequence=1
- Fiore, M.; Minni, A.; Cavalcanti, L.; Raponi, G.; Puggioni, G.; Mattia, A.; Gariglio, S.; Colizza, A.; Meliante, P.G.; Zoccali, F.; Tarani, L.; Barbato, C.; Lucarelli, M.; Ceci, F.M.; Francati, S.; Ferraguti, G.; Ceccanti, M.; Petrella, C. The impact of alcohol consumption and oral microbiota on upper aerodigestive tract carcinomas: A pilot study. Antioxidants, 2023, 12(6), 1233. doi: 10.3390/antiox12061233 PMID: 37371963
- Ceci, F.M.; Ceccanti, M.; Petrella, C.; Vitali, M.; Messina, M.P.; Chaldakov, G.N.; Greco, A.; Ralli, M.; Lucarelli, M.; Angeloni, A.; Fiore, M.; Ferraguti, G. Alcohol drinking, apolipoprotein polymorphisms and the risk of cardiovascular diseases. Curr. Neurovasc. Res., 2021, 18(1), 150-161. doi: 10.2174/18755739MTE1eMjEg3 PMID: 33823779
- DAngelo, A.; Petrella, C.; Greco, A.; Ralli, M.; Vitali, M.; Giovagnoli, R.; De Persis, S.; Fiore, M.; Ceccanti, M.; Messina, M.P. Acute alcohol intoxication: A clinical overview. Clin. Ter., 2022, 173(3), 280-291. doi: 10.7417/CT.2022.2432.35612344 PMID: 35612344
- Gorky, J.; Schwaber, J. The role of the gutbrain axis in alcohol use disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 65, 234-241. doi: 10.1016/j.pnpbp.2015.06.013 PMID: 26188287
- Leclercq, S.; Schwarz, M.; Delzenne, N.M.; Stärkel, P.; de Timary, P. Alterations of kynurenine pathway in alcohol use disorder and abstinence: A link with gut microbiota, peripheral inflammation and psychological symptoms. Transl. Psychiatry, 2021, 11(1), 503. doi: 10.1038/s41398-021-01610-5 PMID: 34599147
- Ceci, F.M.; Fiore, M.; Agostinelli, E.; Tahara, T.; Greco, A.; Ralli, M.; Polimeni, A.; Lucarelli, M.; Colletti, R.; Angeloni, A.; Tirassa, P.; Ceccanti, M.; Messina, M.P.; Vitali, M.; Petrella, C.; Ferraguti, G. Urinary ethyl glucuronide for the assessment of alcohol consumption during pregnancy: Comparison between biochemical data and screening questionnaires. Curr. Med. Chem., 2022, 29(17), 3125-3141. doi: 10.2174/0929867328666211125100329 PMID: 34823457
- Ferraguti, G.; Ciolli, P.; Carito, V.; Battagliese, G.; Mancinelli, R.; Ciafrè, S.; Tirassa, P.; Ciccarelli, R.; Cipriani, A.; Messina, M.P.; Fiore, M.; Ceccanti, M. Ethylglucuronide in the urine as a marker of alcohol consumption during pregnancy: Comparison with four alcohol screening questionnaires. Toxicol. Lett., 2017, 275, 49-56. doi: 10.1016/j.toxlet.2017.04.016 PMID: 28455000
- Ferraguti, G.; Merlino, L.; Battagliese, G.; Piccioni, M.G.; Barbaro, G.; Carito, V.; Messina, M.P.; Scalese, B.; Coriale, G.; Fiore, M.; Ceccanti, M. Fetus morphology changes by second-trimester ultrasound in pregnant women drinking alcohol. Addict. Biol., 2020, 25(3), e12724. doi: 10.1111/adb.12724 PMID: 30811093
- de la Monte, S.M.; Kril, J.J. Human alcohol-related neuropathology. Acta Neuropathol., 2014, 127(1), 71-90. doi: 10.1007/s00401-013-1233-3 PMID: 24370929
- Ramchandani, V.A.; Stangl, B.L.; Blaine, S.K.; Plawecki, M.H.; Schwandt, M.L.; Kwako, L.E.; Sinha, R.; Cyders, M.A.; OConnor, S.; Zakhari, S. Stress vulnerability and alcohol use and consequences: From human laboratory studies to clinical outcomes. Alcohol, 2018, 72, 75-88. doi: 10.1016/j.alcohol.2018.06.001 PMID: 30322482
- Derme, M.; Piccioni, M.G.; Brunelli, R.; Crognale, A.; Denotti, M.; Ciolli, P.; Scomparin, D.; Tarani, L.; Paparella, R.; Terrin, G.; Di Chiara, M.; Mattia, A.; Nicotera, S.; Salomone, A.; Ceccanti, M.; Messina, M.P.; Maida, N.L.; Ferraguti, G.; Petrella, C.; Fiore, M. Oxidative stress in a mother consuming alcohol during pregnancy and in her newborn: A case report. Antioxidants, 2023, 12(6), 1216. doi: 10.3390/antiox12061216 PMID: 37371946
- Petrella, C.; Carito, V.; Carere, C.; Ferraguti, G.; Ciafrè, S.; Natella, F.; Bello, C.; Greco, A.; Ralli, M.; Mancinelli, R.; Messina, M.P.; Fiore, M.; Ceccanti, M. Oxidative stress inhibition by resveratrol in alcohol-dependent mice. Nutrition, 2020, 79-80, 110783. doi: 10.1016/j.nut.2020.110783 PMID: 32569950
- Carito, V.; Ceccanti, M.; Cestari, V.; Natella, F.; Bello, C.; Coccurello, R.; Mancinelli, R.; Fiore, M. Olive polyphenol effects in a mouse model of chronic ethanol addiction. Nutrition, 2017, 33, 65-69. doi: 10.1016/j.nut.2016.08.014 PMID: 27908553
- Shivani, R.; Goldsmith, R.J.; Anthenelli, R.M. Alcoholism and psychiatric disorders: Diagnostic challenges. Alcohol Res. Health, 2002, 26(2), 90-98.
- Rodd, Z.A.; Bertsch, B.A.; Strother, W.N.; Le-Niculescu, H.; Balaraman, Y.; Hayden, E.; Jerome, R.E.; Lumeng, L.; Nurnberger, J.I., Jr; Edenberg, H.J.; McBride, W.J.; Niculescu, A.B. Candidate genes, pathways and mechanisms for alcoholism: an expanded convergent functional genomics approach. Pharmacogenomics J., 2007, 7(4), 222-256. doi: 10.1038/sj.tpj.6500420 PMID: 17033615
- Köhnke, M.D. Approach to the genetics of alcoholism: A review based on pathophysiology. Biochem. Pharmacol., 2008, 75(1), 160-177. doi: 10.1016/j.bcp.2007.06.021 PMID: 17669369
- Goldman, D.; Oroszi, G.; Ducci, F. The genetics of addictions: Uncovering the genes. Nat. Rev. Genet., 2005, 6(7), 521-532. doi: 10.1038/nrg1635 PMID: 15995696
- Lesch, K.P. Alcohol dependence and gene x environment interaction in emotion regulation: Is serotonin the link? Eur. J. Pharmacol., 2005, 526(1-3), 113-124. doi: 10.1016/j.ejphar.2005.09.027 PMID: 16288736
- Hiroi, N.; Agatsuma, S. Genetic susceptibility to substance dependence. Mol. Psychiatry, 2005, 10(4), 336-344. doi: 10.1038/sj.mp.4001622 PMID: 15583701
- Oroszi, G.; Goldman, D. Alcoholism: Genes and mechanisms. Pharmacogenomics, 2004, 5(8), 1037-1048. doi: 10.1517/14622416.5.8.1037 PMID: 15584875
- Ferraguti, G.; Pascale, E.; Lucarelli, M. Alcohol addiction: A molecular biology perspective. Curr. Med. Chem., 2015, 22(6), 670-684. doi: 10.2174/0929867321666141229103158 PMID: 25544474
- Matoić, A.; Maruić, S.; Vidrih, B.; Kovak-Mufić, A.; Cicin-ain, L. Neurobiological bases of alcohol addiction. Acta Clin. Croat., 2016, 55(1), 134-150. doi: 10.20471/acc.2016.55.01.19 PMID: 27333729
- Cotton, N.S. The familial incidence of alcoholism: A review. J. Stud. Alcohol, 1979, 40(1), 89-116. doi: 10.15288/jsa.1979.40.89 PMID: 376949
- Cservenka, A. Neurobiological phenotypes associated with a family history of alcoholism. Drug Alcohol Depend., 2016, 158, 8-21. doi: 10.1016/j.drugalcdep.2015.10.021 PMID: 26559000
- Ceccanti, M.; Hamilton, D.; Coriale, G.; Carito, V.; Aloe, L.; Chaldakov, G.; Romeo, M.; Ceccanti, M.; Iannitelli, A.; Fiore, M. Spatial learning in men undergoing alcohol detoxification. Physiol. Behav., 2015, 149, 324-330. doi: 10.1016/j.physbeh.2015.06.034 PMID: 26143187
- Ferraguti, G.; Terracina, S.; Petrella, C.; Greco, A.; Minni, A.; Lucarelli, M.; Agostinelli, E.; Ralli, M.; de Vincentiis, M.; Raponi, G.; Polimeni, A.; Ceccanti, M.; Caronti, B.; Di Certo, M.G.; Barbato, C.; Mattia, A.; Tarani, L.; Fiore, M. Alcohol and head and neck cancer: Updates on the role of oxidative stress, genetic, epigenetics, oral microbiota, antioxidants, and alkylating agents. Antioxidants, 2022, 11(1), 145. doi: 10.3390/antiox11010145 PMID: 35052649
- Ceccanti, M.; Coriale, G.; Hamilton, D.A.; Carito, V.; Coccurello, R.; Scalese, B.; Ciafrè, S.; Codazzo, C.; Messina, M.P.; Chaldakov, G.N.; Fiore, M. Virtual Morris task responses in individuals in an abstinence phase from alcohol. Can. J. Physiol. Pharmacol., 2018, 96(2), 128-136. doi: 10.1139/cjpp-2017-0013 PMID: 28763626
- Cloninger, C.R.; Bohman, M.; Sigvardsson, S. Inheritance of alcohol abuse. Cross-fostering analysis of adopted men. Arch. Gen. Psychiatry, 1981, 38(8), 861-868. doi: 10.1001/archpsyc.1981.01780330019001 PMID: 7259422
- Iyer-Eimerbrink, P.A.; Nurnberger, J.I., Jr. Genetics of alcoholism. Curr. Psychiatry Rep., 2014, 16(12), 518. doi: 10.1007/s11920-014-0518-0 PMID: 25399692
- Fadda, F.; Rossetti, Z.L. Chronic ethanol consumption: From neuroadaptation to neurodegeneration. Prog. Neurobiol., 1998, 56(4), 385-431. doi: 10.1016/S0301-0082(98)00032-X PMID: 9775400
- Ross, S.; Peselow, E. The neurobiology of addictive disorders. Clin. Neuropharmacol., 2009, 32(5), 269-276. doi: 10.1097/WNF.0b013e3181a9163c PMID: 19834992
- Koob, G.F.; Volkow, N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry, 2016, 3(8), 760-773. doi: 10.1016/S2215-0366(16)00104-8 PMID: 27475769
- Wise, R.A.; Robble, M.A. Dopamine and addiction. Annu. Rev. Psychol., 2020, 71(1), 79-106. doi: 10.1146/annurev-psych-010418-103337 PMID: 31905114
- Heinz, A.; Beck, A.; Grüsser, S.M.; Grace, A.A.; Wrase, J. Identifying the neural circuitry of alcohol craving and relapse vulnerability. Addict. Biol., 2009, 14(1), 108-118. doi: 10.1111/j.1369-1600.2008.00136.x PMID: 18855799
- Zorrilla, E.P.; Koob, G.F. Impulsivity derived from the dark side: Neurocircuits that contribute to negative urgency. Front. Behav. Neurosci., 2019, 13, 136. doi: 10.3389/fnbeh.2019.00136 PMID: 31293401
- Courtney, K.E.; Arellano, R.; Barkley-Levenson, E.; Gálvan, A.; Poldrack, R.A.; MacKillop, J.; David Jentsch, J.; Ray, L.A. The relationship between measures of impulsivity and alcohol misuse: An integrative structural equation modeling approach. Alcohol. Clin. Exp. Res., 2012, 36(6), 923-931. doi: 10.1111/j.1530-0277.2011.01635.x PMID: 22091877
- Bechara, A.; Damasio, H.; Damasio, A.R. Emotion, decision making and the orbitofrontal cortex. Cereb. Cortex, 2000, 10(3), 295-307. doi: 10.1093/cercor/10.3.295 PMID: 10731224
- Koob, G.F.; Volkow, N.D. Neurocircuitry of addiction. Neuropsychopharmacology, 2010, 35(1), 217-238. doi: 10.1038/npp.2009.110 PMID: 19710631
- Sinha, R. New findings on biological factors predicting addiction relapse vulnerability. Curr. Psychiatry Rep., 2011, 13(5), 398-405. doi: 10.1007/s11920-011-0224-0 PMID: 21792580
- Rehm, J.; Shield, K.D.; Gmel, G.; Rehm, M.X.; Frick, U. Modeling the impact of alcohol dependence on mortality burden and the effect of available treatment interventions in the European Union. Eur. Neuropsychopharmacol., 2013, 23(2), 89-97. doi: 10.1016/j.euroneuro.2012.08.001 PMID: 22920734
- Hasin, D.S.; Stinson, F.S.; Ogburn, E.; Grant, B.F. Prevalence, correlates, disability, and comorbidity of DSM-IV alcohol abuse and dependence in the United States: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. Arch. Gen. Psychiatry, 2007, 64(7), 830-842. doi: 10.1001/archpsyc.64.7.830 PMID: 17606817
- Zindel, L.R.; Kranzler, H.R. Pharmacotherapy of alcohol use disorders: Seventy-five years of progress. Curr. Psychiatry Rep., 2014, 8(5), 383-388.
- Pettinati, H.M.; Rabinowitz, A.R. Choosing the right medication for the treatment of alcoholism. Curr. Psychiatry Rep., 2006, 8(5), 383-388. doi: 10.1007/s11920-006-0040-0 PMID: 16968619
- Petrakis, I.L. A rational approach to the pharmacotherapy of alcohol dependence. J. Clin. Psychopharmacol., 2006, 26(6), S3-S12. doi: 10.1097/01.jcp.0000248602.68607.81 PMID: 17114952
- Wallhed Finn, S.; Lundin, A.; Sjöqvist, H.; Danielsson, A.K. Pharmacotherapy for alcohol use disorders Unequal provision across sociodemographic factors and co-morbid conditions. A cohort study of the total population in Sweden. Drug Alcohol Depend., 2021, 227, 108964. doi: 10.1016/j.drugalcdep.2021.108964 PMID: 34518028
- Ceccanti, M.; Iannitelli, A.; Fiore, M. Italian Guidelines for the treatment of alcohol dependence. Riv. Psichiatr., 2018, 53(3), 105-106. doi: 10.1708/2925.29410.29912210 PMID: 29912210
- Ray, L.A.; Bujarski, S.; Grodin, E.; Hartwell, E.; Green, R.; Venegas, A.; Lim, A.C.; Gillis, A.; Miotto, K. State-of-the-art behavioral and pharmacological treatments for alcohol use disorder. Am. J. Drug Alcohol Abuse, 2019, 45(2), 124-140. doi: 10.1080/00952990.2018.1528265 PMID: 30373394
- Mohapatra, S.; Rath, N.R. Disulfiram Induced Psychosis. Clin. Psychopharmacol. Neurosci., 2017, 15(1), 68-69. doi: 10.9758/cpn.2017.15.1.68.28138114
- Luger, K.; Mäder, A.W.; Richmond, R.K.; Sargent, D.F.; Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature, 1997, 389(6648), 251-260. doi: 10.1038/38444 PMID: 9305837
- Luger, K.; Dechassa, M.L.; Tremethick, D.J. New insights into nucleosome and chromatin structure: An ordered state or a disordered affair? Nat. Rev. Mol. Cell Biol., 2012, 13(7), 436-447. doi: 10.1038/nrm3382 PMID: 22722606
- Woodcock, C.L.; Skoultchi, A.I.; Fan, Y. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res., 2006, 14(1), 17-25. doi: 10.1007/s10577-005-1024-3 PMID: 16506093
- Warnault, V.; Darcq, E.; Levine, A.; Barak, S.; Ron, D. Chromatin remodeling a novel strategy to control excessive alcohol drinking. Transl. Psychiatry, 2013, 3(2), e231. doi: 10.1038/tp.2013.4 PMID: 23423140
- De Majo, F.; Calore, M. Chromatin remodelling and epigenetic state regulation by non-coding RNAs in the diseased heart. Noncoding RNA Res., 2018, 3(1), 20-28. doi: 10.1016/j.ncrna.2018.02.003 PMID: 30159436
- Werner, R.J.; Kelly, A.D.; Issa, J.P.J. Epigenetics and precision oncology. Cancer J., 2017, 23(5), 262-269. doi: 10.1097/PPO.0000000000000281 PMID: 28926426
- Nicoglou, A.; Merlin, F. Epigenetics: A way to bridge the gap between biological fields. Stud. Hist. Philos. Sci. Part Stud. Hist. Philos. Biol. Biomed. Sci., 2017, 66, 73-82. doi: 10.1016/j.shpsc.2017.10.002 PMID: 29033228
- Helm, M.; Motorin, Y. Detecting RNA modifications in the epitranscriptome: Predict and validate. Nat. Rev. Genet., 2017, 18(5), 275-291. doi: 10.1038/nrg.2016.169 PMID: 28216634
- Kundaje, A.; Meuleman, W.; Ernst, J.; Bilenky, M.; Yen, A.; Heravi-Moussavi, A.; Kheradpour, P.; Zhang, Z.; Wang, J.; Ziller, M.J.; Amin, V.; Whitaker, J.W.; Schultz, M.D.; Ward, L.D.; Sarkar, A.; Quon, G.; Sandstrom, R.S.; Eaton, M.L.; Wu, Y.C.; Pfenning, A.R.; Wang, X.; Claussnitzer, M.; Liu, Y.; Coarfa, C.; Harris, R.A.; Shoresh, N.; Epstein, C.B.; Gjoneska, E.; Leung, D.; Xie, W.; Hawkins, R.D.; Lister, R.; Hong, C.; Gascard, P.; Mungall, A.J.; Moore, R.; Chuah, E.; Tam, A.; Canfield, T.K.; Hansen, R.S.; Kaul, R.; Sabo, P.J.; Bansal, M.S.; Carles, A.; Dixon, J.R.; Farh, K.H.; Feizi, S.; Karlic, R.; Kim, A.R.; Kulkarni, A.; Li, D.; Lowdon, R.; Elliott, G.; Mercer, T.R.; Neph, S.J.; Onuchic, V.; Polak, P.; Rajagopal, N.; Ray, P.; Sallari, R.C.; Siebenthall, K.T.; Sinnott-Armstrong, N.A.; Stevens, M.; Thurman, R.E.; Wu, J.; Zhang, B.; Zhou, X.; Beaudet, A.E.; Boyer, L.A.; De Jager, P.L.; Farnham, P.J.; Fisher, S.J.; Haussler, D.; Jones, S.J.M.; Li, W.; Marra, M.A.; McManus, M.T.; Sunyaev, S.; Thomson, J.A.; Tlsty, T.D.; Tsai, L.H.; Wang, W.; Waterland, R.A.; Zhang, M.Q.; Chadwick, L.H.; Bernstein, B.E.; Costello, J.F.; Ecker, J.R.; Hirst, M.; Meissner, A.; Milosavljevic, A.; Ren, B.; Stamatoyannopoulos, J.A.; Wang, T.; Kellis, M. Integrative analysis of 111 reference human epigenomes. Nature, 2015, 518(7539), 317-330. doi: 10.1038/nature14248 PMID: 25693563
- Allis, C.D.; Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet., 2016, 17(8), 487-500. doi: 10.1038/nrg.2016.59 PMID: 27346641
- Stefanska, B.; MacEwan, D.J. Epigenetics and pharmacology. Br. J. Pharmacol., 2015, 2701
- Berdasco, M.; Esteller, M. Clinical epigenetics: Seizing opportunities for translation. Nat. Rev. Genet., 2019, 20(2), 109-127. doi: 10.1038/s41576-018-0074-2 PMID: 30479381
- Wei, J.W.; Huang, K.; Yang, C.; Kang, C.S. Non-coding RNAs as regulators in epigenetics. Oncol. Rep., 2017, 37(1), 3-9. doi: 10.3892/or.2016.5236 PMID: 27841002
- Terracina, S.; Ferraguti, G.; Tarani, L.; Messina, M.P.; Lucarelli, M.; Vitali, M.; De Persis, S.; Greco, A.; Minni, A.; Polimeni, A.; Ceccanti, M.; Petrella, C.; Fiore, M. Transgenerational abnormalities induced by paternal preconceptual alcohol drinking: Findings from humans and animal models. Curr. Neuropharmacol., 2022, 20(6), 1158-1173. doi: 10.2174/1570159X19666211101111430 PMID: 34720083
- Fiore, M.; Petrella, C.; Coriale, G.; Rosso, P.; Fico, E.; Ralli, M.; Greco, A.; De Vincentiis, M.; Minni, A.; Polimeni, A.; Vitali, M.; Messina, M.P.; Ferraguti, G.; Tarani, F.; de Persis, S.; Ceccanti, M.; Tarani, L. Markers of neuroinflammation in the serum of prepubertal children with fetal alcohol spectrum disorders. CNS Neurol. Disord. Drug Targets, 2022, 21(9), 854-868. doi: 10.2174/1871527320666211201154839 PMID: 34852752
- Egervari, G.; Siciliano, C.A.; Whiteley, E.L.; Ron, D. Alcohol and the brain: From genes to circuits. Trends Neurosci., 2021, 44(12), 1004-1015. doi: 10.1016/j.tins.2021.09.006 PMID: 34702580
- Rodriguez, F.D.; Coveñas, R. Targeting opioid and neurokinin-1 receptors to treat alcoholism. Curr. Med. Chem., 2011, 18(28), 4321-4334. doi: 10.2174/092986711797200444 PMID: 21861818
- Rodriguez, F.D.; Coveñas, R. Targeting NPY, CRF/UCNs and NPS neuropeptide systems to treat alcohol use disorder (AUD). Curr. Med. Chem., 2017, 24(23), 2528-2558. doi: 10.2174/0929867324666170316120836.28302012 PMID: 28302012
- Volkow, N.D.; Koob, G.F.; McLellan, A.T. Neurobiologic advances from the brain disease model of addiction. N. Engl. J. Med., 2016, 374(4), 363-371. doi: 10.1056/NEJMra1511480 PMID: 26816013
- Palmisano, M.; Pandey, S.C. Epigenetic mechanisms of alcoholism and stress-related disorders. Alcohol, 2017, 60, 7-18. doi: 10.1016/j.alcohol.2017.01.001 PMID: 28477725
- Spanagel, R.; Noori, H.R.; Heilig, M. Stress and alcohol interactions: Animal studies and clinical significance. Trends Neurosci., 2014, 37(4), 219-227. doi: 10.1016/j.tins.2014.02.006 PMID: 24636458
- Pandey, S.C.; Zhang, H.; Ugale, R.; Prakash, A.; Xu, T.; Misra, K. Effector immediate-early gene arc in the amygdala plays a critical role in alcoholism. J. Neurosci., 2008, 28(10), 2589-2600. doi: 10.1523/JNEUROSCI.4752-07.2008 PMID: 18322102
- Sakharkar, A.J.; Zhang, H.; Tang, L.; Shi, G.; Pandey, S.C. Histone deacetylases (HDAC)-induced histone modifications in the amygdala: A role in rapid tolerance to the anxiolytic effects of ethanol. Alcohol. Clin. Exp. Res., 2012, 36(1), 61-71. doi: 10.1111/j.1530-0277.2011.01581.x PMID: 21790673
- Correa, F.; De Laurentiis, A.; Franchi, A.M. Ethanol downregulates N- acyl phosphatidylethanolamine-phospholipase D expression in BV2 microglial cells via epigenetic mechanisms. Eur. J. Pharmacol., 2016, 786, 224-233. doi: 10.1016/j.ejphar.2016.06.004 PMID: 27266665
- Guo, W.; Crossey, E.L.; Zhang, L.; Zucca, S.; George, O.L.; Valenzuela, C.F.; Zhao, X. Alcohol exposure decreases CREB binding protein expression and histone acetylation in the developing cerebellum. PLoS One, 2011, 6(5), e19351. doi: 10.1371/journal.pone.0019351 PMID: 21655322
- Kyzar, E.J.; Pandey, S.C. Molecular mechanisms of synaptic remodeling in alcoholism. Neurosci. Lett., 2015, 601, 11-19. doi: 10.1016/j.neulet.2015.01.051 PMID: 25623036
- Pandey, S.C.; Roy, A.; Zhang, H. The decreased phosphorylation of cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein in the central amygdala acts as a molecular substrate for anxiety related to ethanol withdrawal in rats. Alcohol. Clin. Exp. Res., 2003, 27(3), 396-409. doi: 10.1097/01.ALC.0000056616.81971.49 PMID: 12658105
- Teppen, T.L.; Krishnan, H.R.; Zhang, H.; Sakharkar, A.J.; Pandey, S.C. The potential role of amygdaloid MicroRNA-494 in alcohol-induced anxiolysis. Biol. Psychiatry, 2016, 80(9), 711-719. doi: 10.1016/j.biopsych.2015.10.028 PMID: 26786313
- Kyzar, E.J.; Zhang, H.; Pandey, S.C. Adolescent alcohol exposure epigenetically suppresses amygdala arc enhancer RNA expression to confer adult anxiety susceptibility. Biol. Psychiatry, 2019, 85(11), 904-914. doi: 10.1016/j.biopsych.2018.12.021 PMID: 30827484
- McCarthy, M.J.; Duchemin, A.M.; Neff, N.H.; Hadjiconstantinou, M. CREB involvement in the regulation of striatal prodynorphin by nicotine. Psychopharmacology, 2012, 221(1), 143-153. doi: 10.1007/s00213-011-2559-y PMID: 22086359
- DAddario, C.; Caputi, F.F.; Ekström, T.J.; Di Benedetto, M.; Maccarrone, M.; Romualdi, P.; Candeletti, S. Ethanol induces epigenetic modulation of prodynorphin and pronociceptin gene expression in the rat amygdala complex. J. Mol. Neurosci., 2013, 49(2), 312-319. doi: 10.1007/s12031-012-9829-y PMID: 22684622
- Carito, V.; Ceccanti, M.; Ferraguti, G.; Coccurello, R.; Ciafrè, S.; Tirassa, P.; Fiore, M. NGF and BDNF alterations by prenatal alcohol exposure. Curr. Neuropharmacol., 2019, 17(4), 308-317. doi: 10.2174/1570159X15666170825101308 PMID: 28847297
- Mews, P.; Egervari, G.; Nativio, R.; Sidoli, S.; Donahue, G.; Lombroso, S.I.; Alexander, D.C.; Riesche, S.L.; Heller, E.A.; Nestler, E.J.; Garcia, B.A.; Berger, S.L. Alcohol metabolism contributes to brain histone acetylation. Nature, 2019, 574(7780), 717-721. doi: 10.1038/s41586-019-1700-7 PMID: 31645761
- Carvalho, A.F.; Heilig, M.; Perez, A.; Probst, C.; Rehm, J. Alcohol use disorders. Lancet, 2019, 394(10200), 781-792. doi: 10.1016/S0140-6736(19)31775-1 PMID: 31478502
- Ron, D.; Barak, S. Molecular mechanisms underlying alcohol-drinking behaviours. Nat. Rev. Neurosci., 2016, 17(9), 576-591. doi: 10.1038/nrn.2016.85 PMID: 27444358
- Abrahao, K.P.; Salinas, A.G.; Lovinger, D.M. Alcohol and the brain: Neuronal molecular targets, synapses, and circuits. Neuron, 2017, 96(6), 1223-1238. doi: 10.1016/j.neuron.2017.10.032 PMID: 29268093
- Pandey, S.C.; Kyzar, E.J.; Zhang, H. Epigenetic basis of the dark side of alcohol addiction. Neuropharmacology, 2017, 122, 74-84. doi: 10.1016/j.neuropharm.2017.02.002 PMID: 28174112
- ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489(7414), 57-74. doi: 10.1038/nature11247 PMID: 22955616
- Luger, K.; Hansen, J.C. Nucleosome and chromatin fiber dynamics. Curr. Opin. Struct. Biol., 2005, 15(2), 188-196. doi: 10.1016/j.sbi.2005.03.006 PMID: 15837178
- Bowman, G.D.; Poirier, M.G. Post-translational modifications of histones that influence nucleosome dynamics. Chem. Rev., 2015, 115(6), 2274-2295. doi: 10.1021/cr500350x PMID: 25424540
- Arnaudo, A.M.; Garcia, B.A. Proteomic characterization of novel histone post-translational modifications. Epigenetics Chromatin, 2013, 6(1), 24. doi: 10.1186/1756-8935-6-24 PMID: 23916056
- Rossetto, D.; Avvakumov, N.; Côté, J. Histone phosphorylation. Epigenetics, 2012, 7(10), 1098-1108. doi: 10.4161/epi.21975 PMID: 22948226
- Lee, J.S.; Smith, E.; Shilatifard, A. The language of histone crosstalk. Cell, 2010, 142(5), 682-685. doi: 10.1016/j.cell.2010.08.011 PMID: 20813257
- Shanmugam, M.K.; Arfuso, F.; Arumugam, S.; Chinnathambi, A.; Jinsong, B.; Warrier, S.; Wang, L.Z.; Kumar, A.P.; Ahn, K.S.; Sethi, G.; Lakshmanan, M. Role of novel histone modifications in cancer. Oncotarget, 2018, 9(13), 11414-11426. doi: 10.18632/oncotarget.23356 PMID: 29541423
- Tamburri, S.; Lavarone, E.; Fernández-Pérez, D.; Conway, E.; Zanotti, M.; Manganaro, D.; Pasini, D. Histone H2AK119 mono-ubiquitination is essential for polycomb-mediated transcriptional repression. Mol. Cell, 2020, 77(4), 840-856.e5. doi: 10.1016/j.molcel.2019.11.021 PMID: 31883952
- Tan, M.; Luo, H.; Lee, S.; Jin, F.; Yang, J.S.; Montellier, E.; Buchou, T.; Cheng, Z.; Rousseaux, S.; Rajagopal, N.; Lu, Z.; Ye, Z.; Zhu, Q.; Wysocka, J.; Ye, Y.; Khochbin, S.; Ren, B.; Zhao, Y. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell, 2011, 146(6), 1016-1028. doi: 10.1016/j.cell.2011.08.008 PMID: 21925322
- Young, N.L.; DiMaggio, P.A.; Garcia, B.A. The significance, development and progress of high-throughput combinatorial histone code analysis. Cell. Mol. Life Sci., 2010, 67(23), 3983-4000. doi: 10.1007/s00018-010-0475-7 PMID: 20683756
- Kalda, A.; Heidmets, L.T.; Shen, H.Y.; Zharkovsky, A.; Chen, J.F. Histone deacetylase inhibitors modulates the induction and expression of amphetamine-induced behavioral sensitization partially through an associated learning of the environment in mice. Behav. Brain Res., 2007, 181(1), 76-84. doi: 10.1016/j.bbr.2007.03.027 PMID: 17477979
- Kumar, A.; Choi, K.H.; Renthal, W.; Tsankova, N.M.; Theobald, D.E.H.; Truong, H.T.; Russo, S.J.; LaPlant, Q.; Sasaki, T.S.; Whistler, K.N.; Neve, R.L.; Self, D.W.; Nestler, E.J. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron, 2005, 48(2), 303-314. doi: 10.1016/j.neuron.2005.09.023 PMID: 16242410
- Ciafrè, S.; Ferraguti, G.; Greco, A.; Polimeni, A.; Ralli, M.; Ceci, F.M.; Ceccanti, M.; Fiore, M. Alcohol as an early life stressor: Epigenetics, metabolic, neuroendocrine and neurobehavioral implications. Neurosci. Biobehav. Rev., 2020, 118, 654-668. doi: 10.1016/j.neubiorev.2020.08.018 PMID: 32976915
- Wapenaar, H.; Dekker, F.J. Histone acetyltransferases: Challenges in targeting bi-substrate enzymes. Clin. Epigenetics, 2016, 8(1), 59. doi: 10.1186/s13148-016-0225-2 PMID: 27231488
- Lombardi, P.M.; Cole, K.E.; Dowling, D.P.; Christianson, D.W. Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Curr. Opin. Struct. Biol., 2011, 21(6), 735-743. doi: 10.1016/j.sbi.2011.08.004 PMID: 21872466
- Cochran, A.G.; Conery, A.R.; Sims, R.J., III Bromodomains: A new target class for drug development. Nat. Rev. Drug Discov., 2019, 18(8), 609-628. doi: 10.1038/s41573-019-0030-7 PMID: 31273347
- de la Cruz, X.; Lois, S.; Sánchez-Molina, S.; Martínez-Balbás, M.A. Do protein motifs read the histone code? BioEssays, 2005, 27(2), 164-175. doi: 10.1002/bies.20176 PMID: 15666348
- Musselman, C.A.; Lalonde, M.E.; Côté, J.; Kutateladze, T.G. Perceiving the epigenetic landscape through histone readers. Nat. Struct. Mol. Biol., 2012, 19(12), 1218-1227. doi: 10.1038/nsmb.2436 PMID: 23211769
- Benton, C.B.; Fiskus, W.; Bhalla, K.N. Targeting histone acetylation. Cancer J., 2017, 23(5), 286-291. doi: 10.1097/PPO.0000000000000284 PMID: 28926429
- Taniguchi, Y. The bromodomain and extra-terminal domain (BET) family: Functional anatomy of BET paralogous proteins. Int. J. Mol. Sci., 2016, 17(11), 1849. doi: 10.3390/ijms17111849 PMID: 27827996
- Choudhury, M.; Park, P.H.; Jackson, D.; Shukla, S.D. Evidence for the role of oxidative stress in the acetylation of histone H3 by ethanol in rat hepatocytes. Alcohol, 2010, 44(6), 531-540. doi: 10.1016/j.alcohol.2010.06.003 PMID: 20705415
- Pascual, M.; Boix, J.; Felipo, V.; Guerri, C. Repeated alcohol administration during adolescence causes changes in the mesolimbic dopaminergic and glutamatergic systems and promotes alcohol intake in the adult rat. J. Neurochem., 2009, 108(4), 920-931. doi: 10.1111/j.1471-4159.2008.05835.x PMID: 19077056
- Kim, J.S.; Shukla, S.D. Acute in vitro effect of ethanol (binge drinking) on histone H3 modifications in rat tissues. Alcohol Alcohol., 2006, 41(2), 126-132. doi: 10.1093/alcalc/agh248 PMID: 16314425
- Bannister, A.J.; Schneider, R.; Kouzarides, T. Histone methylation. Cell, 2002, 109(7), 801-806. doi: 10.1016/S0092-8674(02)00798-5 PMID: 12110177
- Bannister, A.J.; Kouzarides, T. Reversing histone methylation. Nature, 2005, 436(7054), 1103-1106. doi: 10.1038/nature04048 PMID: 16121170
- Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res., 2011, 21(3), 381-395. doi: 10.1038/cr.2011.22 PMID: 21321607
- Chen, D.; Ma, H.; Hong, H.; Koh, S.S.; Huang, S.M.; Schurter, B.T.; Aswad, D.W.; Stallcup, M.R. Regulation of transcription by a protein methyltransferase. Science, 1999, 284(5423), 2174-2177. doi: 10.1126/science.284.5423.2174
- Wang, H.; Huang, Z.Q.; Xia, L.; Feng, Q.; Erdjument-Bromage, H.; Strahl, B.D.; Briggs, S.D.; Allis, C.D.; Wong, J.; Tempst, P.; Zhang, Y. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science, 2001, 293(5531), 853-857. doi: 10.1126/science.1060781 PMID: 11387442
- Martin, C.; Zhang, Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol., 2005, 6(11), 838-849. doi: 10.1038/nrm1761 PMID: 16261189
- Klose, R.J.; Zhang, Y. Regulation of histone methylation by demethylimination and demethylation. Nat. Rev. Mol. Cell Biol., 2007, 8(4), 307-318. doi: 10.1038/nrm2143 PMID: 17342184
- Kaniskan, H.Ü.; Martini, M.L.; Jin, J. Inhibitors of protein methyltransferases and demethylases. Chem. Rev., 2018, 118(3), 989-1068. doi: 10.1021/acs.chemrev.6b00801 PMID: 28338320
- Kang, M.K.; Mehrazarin, S.; Park, N-H.; Wang, C-Y. Epigenetic gene regulation by histone demethylases: Emerging role in oncogenesis and inflammation. Oral Dis., 2017, 23(6), 709-720. doi: 10.1111/odi.12569 PMID: 27514027
- Arrowsmith, C.H.; Schapira, M. Targeting non-bromodomain chromatin readers. Nat. Struct. Mol. Biol., 2019, 26(10), 863-869. doi: 10.1038/s41594-019-0290-2 PMID: 31582844
- Ciafrè, S.; Carito, V.; Ferraguti, G.; Greco, A.; Chaldakov, G.N.; Fiore, M.; Ceccanti, M. How alcohol drinking affects our genes: An epigenetic point of view. Biochem. Cell Biol., 2019, 97(4), 345-356. doi: 10.1139/bcb-2018-0248 PMID: 30412425
- Finegersh, A.; Homanics, G.E. Acute ethanol alters multiple histone modifications at model gene promoters in the cerebral cortex. Alcohol. Clin. Exp. Res., 2014, 38(7), 1865-1873. doi: 10.1111/acer.12465 PMID: 24942484
- Qiang, M.; Denny, A.; Lieu, M.; Carreon, S.; Li, J. Histone H3K9 modifications are a local chromatin event involved in ethanol-induced neuroadaptation of the NR2B gene. Epigenetics, 2011, 6(9), 1095-1104. doi: 10.4161/epi.6.9.16924 PMID: 21814037
- Karpyak, V.M.; Winham, S.J.; Preuss, U.W.; Zill, P.; Cunningham, J.M.; Walker, D.L.; Lewis, K.A.; Geske, J.R.; Colby, C.L.; Abulseoud, O.A.; Hall-Flavin, D.K.; Loukianova, L.L.; Schneekloth, T.D.; Frye, M.A.; Bazov, I.; Heit, J.A.; Bakalkin, G.; Mrazek, D.A.; Biernacka, J.M. Association of the PDYN gene with alcohol dependence and the propensity to drink in negative emotional states. Int. J. Neuropsychopharmacol., 2013, 16(5), 975-985. doi: 10.1017/S1461145712001137 PMID: 23101464
- Xuei, X.; Dick, D.; Flury-Wetherill, L.; Tian, H-J.; Agrawal, A.; Bierut, L.; Goate, A.; Bucholz, K.; Schuckit, M.; Nurnberger, J., Jr; Tischfield, J.; Kuperman, S.; Porjesz, B.; Begleiter, H.; Foroud, T.; Edenberg, H.J. Association of the κ-opioid system with alcohol dependence. Mol. Psychiatry, 2006, 11(11), 1016-1024. doi: 10.1038/sj.mp.4001882 PMID: 16924269
- Ponomarev, I.; Wang, S.; Zhang, L.; Harris, R.A.; Mayfield, R.D. Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J. Neurosci., 2012, 32(5), 1884-1897. doi: 10.1523/JNEUROSCI.3136-11.2012 PMID: 22302827
- Urbano, A.; Smith, J.; Weeks, R.J.; Chatterjee, A. Gene-specific targeting of DNA methylation in the mammalian genome. Cancers, 2019, 11(10), 1515. doi: 10.3390/cancers11101515 PMID: 31600992
- Dean, W. Pathways of DNA Demethylation BT - DNA Methyltransferases - Role and Function; Jeltsch, A.; Jurkowska, R.Z., Eds.; Springer International Publishing: Cham, 2016, pp. 247-274. doi: 10.1007/978-3-319-43624-1_11
- Cui, D.; Xu, X. DNA methyltransferases, DNA methylation, and age-associated cognitive function. Int. J. Mol. Sci., 2018, 19(5), 1315. doi: 10.3390/ijms19051315 PMID: 29710796
- Wu, X.; Zhang, Y. TET-mediated active DNA demethylation: Mechanism, function and beyond. Nat. Rev. Genet., 2017, 18(9), 517-534. doi: 10.1038/nrg.2017.33 PMID: 28555658
- Chen, Z.; Zhang, Y. Role of Mammalian DNA methyltransferases in development. Annu. Rev. Biochem., 2020, 89(1), 135-158. doi: 10.1146/annurev-biochem-103019-102815 PMID: 31815535
- Wu, S.C.; Zhang, Y. Active DNA demethylation: Many roads lead to Rome. Nat. Rev. Mol. Cell Biol., 2010, 11(9), 607-620. doi: 10.1038/nrm2950 PMID: 20683471
- Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet., 2012, 13(7), 484-492. doi: 10.1038/nrg3230 PMID: 22641018
- Ginder, G.D.; Williams, D.C., Jr Readers of DNA methylation, the MBD family as potential therapeutic targets. Pharmacol. Ther., 2018, 184, 98-111. doi: 10.1016/j.pharmthera.2017.11.002 PMID: 29128342
- Rausch, C.; Hastert, F.D.; Cardoso, M.C. DNA modification readers and writers and their interplay. J. Mol. Biol., 2019. doi: 10.1016/j.jmb.2019.12.018.31866298 PMID: 31866298
- Bochtler, M.; Kolano, A.; Xu, G.L. DNA demethylation pathways: Additional players and regulators. BioEssays, 2017, 39(1), e201600178. doi: 10.1002/bies.201600178 PMID: 27859411
- Tahiliani, M.; Koh, K.P.; Shen, Y.; Pastor, W.A.; Bandukwala, H.; Brudno, Y.; Agarwal, S.; Iyer, L.M.; Liu, D.R.; Aravind, L. Conversion of 5-Methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL Partner TET1. Science, 2009, 324(5929), 930-935. doi: 10.1126/science.1170116
- Nestler, E.J.; Peña, C.J.; Kundakovic, M.; Mitchell, A.; Akbarian, S. Epigenetic basis of mental illness. Neurosci. a Rev. J. bringing Neurobiol. Neurol. psychiatry, 2016, 22(5), 447-463.
- Starkman, B.G.; Sakharkar, A.J.; Pandey, S.C. Epigenetics-beyond the genome in alcoholism. Alcohol Res., 2012, 34(3), 293-305.
- Longley, M.J.; Lee, J.; Jung, J.; Lohoff, F.W. Epigenetics of alcohol use disorderA review of recent advances in DNA methylation profiling. Addict. Biol., 2021, 26(6), e13006. doi: 10.1111/adb.13006 PMID: 33538087
- Jarczak, J.; Miszczak, M.; Radwanska, K. Is DNA methylation in the brain a mechanism of alcohol use disorder? Front. Behav. Neurosci., 2023, 17(January), 957203. doi: 10.3389/fnbeh.2023.957203 PMID: 36778133
- Bahji, A.; Bach, P.; Danilewitz, M.; Crockford, D.; Devoe, D.J.; el-Guebaly, N.; Saitz, R. Pharmacotherapies for adults with alcohol use disorders: A systematic review and network meta-analysis. J. Addict. Med., 2022, 16(6), 630-638. doi: 10.1097/ADM.0000000000000992 PMID: 35653782
- Philibert, R.A.; Gunter, T.D.; Beach, S.R.H.; Brody, G.H.; Madan, A. MAOA methylation is associated with nicotine and alcohol dependence in women. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2008, 147B(5), 565-570. doi: 10.1002/ajmg.b.30778 PMID: 18454435
- Liu, C.; Marioni, R.E.; Hedman, Å.K.; Pfeiffer, L.; Tsai, P-C.; Reynolds, L.M.; Just, A.C.; Duan, Q.; Boer, C.G.; Tanaka, T.; Elks, C.E.; Aslibekyan, S.; Brody, J.A.; Kühnel, B.; Herder, C.; Almli, L.M.; Zhi, D.; Wang, Y.; Huan, T.; Yao, C.; Mendelson, M.M.; Joehanes, R.; Liang, L.; Love, S-A.; Guan, W.; Shah, S.; McRae, A.F.; Kretschmer, A.; Prokisch, H.; Strauch, K.; Peters, A.; Visscher, P.M.; Wray, N.R.; Guo, X.; Wiggins, K.L.; Smith, A.K.; Binder, E.B.; Ressler, K.J.; Irvin, M.R.; Absher, D.M.; Hernandez, D.; Ferrucci, L.; Bandinelli, S.; Lohman, K.; Ding, J.; Trevisi, L.; Gustafsson, S.; Sandling, J.H.; Stolk, L.; Uitterlinden, A.G.; Yet, I.; Castillo-Fernandez, J.E.; Spector, T.D.; Schwartz, J.D.; Vokonas, P.; Lind, L.; Li, Y.; Fornage, M.; Arnett, D.K.; Wareham, N.J.; Sotoodehnia, N.; Ong, K.K.; van Meurs, J.B.J.; Conneely, K.N.; Baccarelli, A.A.; Deary, I.J.; Bell, J.T.; North, K.E.; Liu, Y.; Waldenberger, M.; London, S.J.; Ingelsson, E.; Levy, D. A DNA methylation biomarker of alcohol consumption. Mol. Psychiatry, 2018, 23(2), 422-433. doi: 10.1038/mp.2016.192 PMID: 27843151
- Brückmann, C.; Di Santo, A.; Karle, K.N.; Batra, A.; Nieratschker, V. Validation of differential GDAP1 DNA methylation in alcohol dependence and its potential function as a biomarker for disease severity and therapy outcome. Epigenetics, 2016, 11(6), 456-463. doi: 10.1080/15592294.2016.1179411 PMID: 27128683
- Ruggeri, B.; Macare, C.; Stopponi, S.; Jia, T.; Carvalho, F.M.; Robert, G.; Banaschewski, T.; Bokde, A.L.W.; Bromberg, U.; Büchel, C.; Cattrell, A.; Conrod, P.J.; Desrivières, S.; Flor, H.; Frouin, V.; Gallinat, J.; Garavan, H.; Gowland, P.; Heinz, A.; Ittermann, B.; Martinot, J.L.; Martinot, M.L.P.; Nees, F.; Papadopoulos-Orfanos, D.; Paus, T.; Poustka, L.; Smolka, M.N.; Vetter, N.C.; Walter, H.; Whelan, R.; Sommer, W.H.; Bakalkin, G.; Ciccocioppo, R.; Schumann, G. Methylation of OPRL1 mediates the effect of psychosocial stress on binge drinking in adolescents. J. Child Psychol. Psychiatry, 2018, 59(6), 650-658. doi: 10.1111/jcpp.12843 PMID: 29197086
- Lucarelli, M.; Ferraguti. G.; Fuso, A. Active demethylation of non-CpG moieties in animals: a neglected research area. Int. J. Mol. Sci., 2019, 20(24), 6272.
- Fuso, A.; Ferraguti, G.; Scarpa, S.; Ferrer, I.; Lucarelli, M. Disclosing bias in bisulfite assay: MethPrimers underestimate high DNA methylation. PLoS One, 2015, 10(2), e0118318. doi: 10.1371/journal.pone.0118318 PMID: 25692551
- Fuso, A.; Scarpa, S.; Grandoni, F.; Strom, R.; Lucarelli, M. A reassessment of semiquantitative analytical procedures for DNA methylation: Comparison of bisulfite- and HpaII polymerase-chain-reaction-based methods. Anal. Biochem., 2006, 350(1), 24-31. doi: 10.1016/j.ab.2005.12.008 PMID: 16445884
- Smith, Z.D.; Meissner, A. DNA methylation: Roles in mammalian development. Nat. Rev. Genet., 2013, 14(3), 204-220. doi: 10.1038/nrg3354 PMID: 23400093
- Patil, V.; Ward, R.L.; Hesson, L.B. The evidence for functional non-CpG methylation in mammalian cells. Epigenetics, 2014, 9(6), 823-828. doi: 10.4161/epi.28741 PMID: 24717538
- Ramasamy, D.; Deva, M.R.A.K.; Rajkumar, T.; Mani, S. Non-CpG methylationa key epigenetic modification in cancer. Brief. Funct. Genomics, 2021, 20(5), 304-311. doi: 10.1093/bfgp/elab035 PMID: 34318313
- Ramsahoye, B.H.; Biniszkiewicz, D.; Lyko, F.; Clark, V.; Bird, A.P.; Jaenisch, R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Natl. Acad. Sci., 2000, 97(10), 5237-5242. doi: 10.1073/pnas.97.10.5237 PMID: 10805783
- Arand, J.; Spieler, D.; Karius, T.; Branco, M.R.; Meilinger, D.; Meissner, A.; Jenuwein, T.; Xu, G.; Leonhardt, H.; Wolf, V.; Walter, J. In vitro control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet., 2012, 8(6), e1002750. doi: 10.1371/journal.pgen.1002750 PMID: 22761581
- Ziller, M.J.; Müller, F.; Liao, J.; Zhang, Y.; Gu, H.; Bock, C.; Boyle, P.; Epstein, C.B.; Bernstein, B.E.; Lengauer, T.; Gnirke, A.; Meissner, A. Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet., 2011, 7(12), e1002389. doi: 10.1371/journal.pgen.1002389 PMID: 22174693
- Guo, J.U.; Su, Y.; Shin, J.H.; Shin, J.; Li, H.; Xie, B.; Zhong, C.; Hu, S.; Le, T.; Fan, G.; Zhu, H.; Chang, Q.; Gao, Y.; Ming, G.; Song, H. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat. Neurosci., 2014, 17(2), 215-222. doi: 10.1038/nn.3607 PMID: 24362762
- Lister, R.; Mukamel, E.A.; Nery, J.R.; Urich, M.; Puddifoot, C.A.; Johnson, N.D.; Lucero, J.; Huang, Y.; Dwork, A.J.; Schultz, M.D. Global epigenomic reconfiguration during mammalian brain development. Science, 2013, 341(6146), 1237905. doi: 10.1126/science.1237905
- Jiang, S.; Cheng, S.J.; Ren, L.C.; Wang, Q.; Kang, Y.J.; Ding, Y.; Hou, M.; Yang, X.X.; Lin, Y.; Liang, N.; Gao, G. An expanded landscape of human long noncoding RNA. Nucleic Acids Res., 2019, 47(15), 7842-7856. doi: 10.1093/nar/gkz621 PMID: 31350901
- Schuettengruber, B.; Bourbon, H.M.; Di Croce, L.; Cavalli, G. Genome regulation by polycomb and trithorax: 70 years and counting. Cell, 2017, 171(1), 34-57. doi: 10.1016/j.cell.2017.08.002 PMID: 28938122
- Schratt, G. microRNAs at the synapse. Nat. Rev. Neurosci., 2009, 10(12), 842-849. doi: 10.1038/nrn2763 PMID: 19888283
- Barringhaus, K.G.; Zamore, P.D. MicroRNAs. Circulation, 2009, 119(16), 2217-2224. doi: 10.1161/CIRCULATIONAHA.107.715839 PMID: 19398677
- Banerjee, A.; Waters, D.; Camacho, O.M.; Minet, E. Quantification of plasma MicroRNAs in a group of healthy smokers, ex-smokers and non-smokers and correlation to biomarkers of tobacco exposure. Biomarkers Biochem. Indic. Expo., 2015, 20(2), 123-131.
- McCrae, J.C.; Sharkey, N.; Webb, D.J.; Vliegenthart, A.D.B.; Dear, J.W. Ethanol consumption produces a small increase in circulating miR-122 in healthy individuals. Clin. Toxicol., 2016, 54(1), 53-55. doi: 10.3109/15563650.2015.1112015 PMID: 26574140
- Zhang, K.; Wang, Q.; Jing, X.; Zhao, Y.; Jiang, H.; Du, J.; Yu, S.; Zhao, M. miR-181a is a negative regulator of GRIA2 in methamphetamine-use disorder. Sci. Rep., 2016, 6(1), 35691. doi: 10.1038/srep35691 PMID: 27767084
- Vo, N.; Klein, M.E.; Varlamova, O.; Keller, D.M.; Yamamoto, T.; Goodman, R.H.; Impey, S. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl. Acad. Sci. USA, 2005, 102(45), 16426-16431. doi: 10.1073/pnas.0508448102 PMID: 16260724
- Hansen, K.F.; Sakamoto, K.; Wayman, G.A.; Impey, S.; Obrietan, K. Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS One, 2010, 5(11), e15497. doi: 10.1371/journal.pone.0015497 PMID: 21124738
- Wang, J.; Cui, Q. Specific roles of MicroRNAs in their interactions with environmental factors. J. Nucleic Acids, 2012, 2012, 1-10. doi: 10.1155/2012/978384 PMID: 23209884
- Li, M.D.; van der Vaart, A.D. MicroRNAs in addiction: Adaptations middlemen? Mol. Psychiatry, 2011, 16(12), 1159-1168. doi: 10.1038/mp.2011.58 PMID: 21606928
- Kyzar, E.J.; Zhang, H.; Sakharkar, A.J.; Pandey, S.C. Adolescent alcohol exposure alters lysine demethylase 1 (LSD1) expression and histone methylation in the amygdala during adulthood. Addict. Biol., 2017, 22(5), 1191-1204. doi: 10.1111/adb.12404 PMID: 27183824
- Zhang, H.; Kyzar, E.J.; Bohnsack, J.P.; Kokare, D.M.; Teppen, T.; Pandey, S.C. Adolescent alcohol exposure epigenetically regulates CREB signaling in the adult amygdala. Sci. Rep., 2018, 8(1), 10376. doi: 10.1038/s41598-018-28415-9 PMID: 29991681
- Li, E.; Zhang, Y. DNA methylation in mammals. Cold Spring Harb. Perspect. Biol., 2014, 6(5), a019133. doi: 10.1101/cshperspect.a019133 PMID: 24789823
- Garro, A.J.; McBeth, D.L.; Lima, V.; Lieber, C.S. Ethanol consumption inhibits fetal DNA methylation in mice: Implications for the fetal alcohol syndrome. Alcohol. Clin. Exp. Res., 1991, 15(3), 395-398. doi: 10.1111/j.1530-0277.1991.tb00536.x PMID: 1877725
- Sakharkar, A.J.; Tang, L.; Zhang, H.; Chen, Y.; Grayson, D.R.; Pandey, S.C. Effects of acute ethanol exposure on anxiety measures and epigenetic modifiers in the extended amygdala of adolescent rats. Int. J. Neuropsychopharmacol., 2014, 17(12), 2057-2067. doi: 10.1017/S1461145714001047 PMID: 24968059
- Guerri, C.; Pascual, M. Mechanisms involved in the neurotoxic, cognitive, and neurobehavioral effects of alcohol consumption during adolescence. Alcohol, 2010, 44(1), 15-26. doi: 10.1016/j.alcohol.2009.10.003 PMID: 20113871
- Most, D.; Ferguson, L.; Harris, R.A. Molecular basis of alcoholism. Handb. Clin. Neurol., 2014, 125, 89-111. doi: 10.1016/B978-0-444-62619-6.00006-9 PMID: 25307570
- Zhang, X.; Kusumo, H.; Sakharkar, A.J.; Pandey, S.C.; Guizzetti, M. Regulation of DNA methylation by ethanol induces tissue plasminogen activator expression in astrocytes. J. Neurochem., 2014, 128(3), 344-349. doi: 10.1111/jnc.12465 PMID: 24117907
- Marutha Ravindran, C.R.; Ticku, M.K. Changes in methylation pattern of NMDA receptor NR2B gene in cortical neurons after chronic ethanol treatment in mice. Brain Res. Mol. Brain Res., 2004, 121(1-2), 19-27. doi: 10.1016/j.molbrainres.2003.10.025 PMID: 14969733
- Werner, C.T.; Altshuler, R.D.; Shaham, Y.; Li, X. Epigenetic mechanisms in drug relapse. Biol. Psychiatry, 2021, 89(4), 331-338. doi: 10.1016/j.biopsych.2020.08.005 PMID: 33066961
- Nieratschker, V.; Grosshans, M.; Frank, J.; Strohmaier, J.; von der Goltz, C.; El-Maarri, O.; Witt, S.H.; Cichon, S.; Nöthen, M.M.; Kiefer, F.; Rietschel, M. Epigenetic alteration of the dopamine transporter gene in alcohol-dependent patients is associated with age. Addict. Biol., 2014, 19(2), 305-311. doi: 10.1111/j.1369-1600.2012.00459.x PMID: 22506971
- Hillemacher, T.; Weinland, C.; Heberlein, A.; Gröschl, M.; Schanze, A.; Frieling, H.; Wilhelm, J.; Kornhuber, J.; Bleich, S. Increased levels of adiponectin and resistin in alcohol dependencepossible link to craving. Drug Alcohol Depend., 2009, 99(1-3), 333-337. doi: 10.1016/j.drugalcdep.2008.07.019 PMID: 18818026
- Patwell, R. Involvement of DNA methylation in alcohol withdrawal-induced behavioral changes in rats. 2021. doi: 10.25417/uic.17025398.v1
- Bönsch, D.; Reulbach, U.; Bayerlein, K.; Hillemacher, T.; Kornhuber, J.; Bleich, S. Elevated alpha synuclein mRNA levels are associated with craving in patients with alcoholism. Biol. Psychiatry, 2004, 56(12), 984-986. doi: 10.1016/j.biopsych.2004.09.016 PMID: 15601610
- Bönsch, D.; Lenz, B.; Kornhuber, J.; Bleich, S. DNA hypermethylation of the alpha synuclein promoter in patients with alcoholism. Neuroreport, 2005, 16(2), 167-170. doi: 10.1097/00001756-200502080-00020 PMID: 15671870
- Foroud, T.; Wetherill, L.F.; Liang, T.; Dick, D.M.; Hesselbrock, V.; Kramer, J.; Nurnberger, J.; Schuckit, M.; Carr, L.; Porjesz, B.; Xuei, X.; Edenberg, H.J. Association of alcohol craving with alpha-synuclein (SNCA). Alcohol. Clin. Exp. Res., 2007, 31(4), 537-545. doi: 10.1111/j.1530-0277.2007.00337.x PMID: 17374032
- Schaffner, S.L.; Lussier, A.A.; Baker, J.A.; Goldowitz, D. Neonatal alcohol exposure in mice induces select differentiation- and apoptosis-related chromatin changes both independent of and dependent on sex. Front Genet., 2020, 11, 35. doi: 10.3389/fgene.2020.00035
- Muschler, M.A.N.; Hillemacher, T.; Kraus, C.; Kornhuber, J.; Bleich, S.; Frieling, H. DNA methylation of the POMC gene promoter is associated with craving in alcohol dependence. J. Neural Transm., 2010, 117(4), 513-519. doi: 10.1007/s00702-010-0378-7 PMID: 20191296
- Zhao, R.; Zhang, R.; Li, W.; Liao, Y.; Tang, J.; Miao, Q.; Hao, W. Genome-wide DNA methylation patterns in discordant sib pairs with alcohol dependence. Asia-Pac. Psychiatry, 2013, 5(1), 39-50. doi: 10.1111/appy.12010 PMID: 23857790
- Koob, G.F. Brain stress systems in the amygdala and addiction. Brain Res., 2009, 1293, 61-75. doi: 10.1016/j.brainres.2009.03.038 PMID: 19332030
- Nan, X.; Ng, H.H.; Johnson, C.A.; Laherty, C.D.; Turner, B.M.; Eisenman, R.N.; Bird, A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 1998, 393(6683), 386-389. doi: 10.1038/30764 PMID: 9620804
- Pandey, S.C.; Ugale, R.; Zhang, H.; Tang, L.; Prakash, A. Brain chromatin remodeling: A novel mechanism of alcoholism. J. Neurosci., 2008, 28(14), 3729-3737. doi: 10.1523/JNEUROSCI.5731-07.2008 PMID: 18385331
- You, C.; Zhang, H.; Sakharkar, A.J.; Teppen, T.; Pandey, S.C. Reversal of deficits in dendritic spines, BDNF and Arc expression in the amygdala during alcohol dependence by HDAC inhibitor treatment. Int. J. Neuropsychopharmacol., 2014, 17(2), 313-322. doi: 10.1017/S1461145713001144 PMID: 24103311
- Pandey, S.C. Anxiety and alcohol abuse disorders: A common role for CREB and its target, the neuropeptide Y gene. Trends Pharmacol. Sci., 2003, 24(9), 456-460. doi: 10.1016/S0165-6147(03)00226-8 PMID: 12967770
- Attilia, F.; Perciballi, R.; Rotondo, C.; Capriglione, I.; Iannuzzi, S.; Attilia, M.L.; Coriale, G.; Vitali, M.; Cereatti, F.; Fiore, M.; Ceccanti, M. Alcohol withdrawal syndrome: Diagnostic and therapeutic methods. Riv. Psichiatr., 2018, 53(3), 118-122. doi: 10.1708/2925.29413.29912213 PMID: 29912213
- Ceci, F.M.; Ferraguti, G.; Petrella, C.; Greco, A.; Ralli, M.; Iannitelli, A.; Carito, V.; Tirassa, P.; Chaldakov, G.N.; Messina, M.P.; Ceccanti, M.; Fiore, M. Nerve growth factor in alcohol use disorders. Curr. Neuropharmacol., 2021, 19(1), 45-60. doi: 10.2174/18756190MTA2fMjAjz PMID: 32348226
- Kalivas, P.W.; Volkow, N.D. New medications for drug addiction hiding in glutamatergic neuroplasticity. Mol. Psychiatry, 2011, 16(10), 974-986. doi: 10.1038/mp.2011.46 PMID: 21519339
- Rani, C.S.S.; Qiang, M.; Ticku, M.K. Potential role of cAMP response element-binding protein in ethanol-induced N-methyl-D-aspartate receptor 2B subunit gene transcription in fetal mouse cortical cells. Mol. Pharmacol., 2005, 67(6), 2126-2136. doi: 10.1124/mol.104.007872 PMID: 15774772
- Biermann, T.; Reulbach, U.; Lenz, B.; Frieling, H.; Muschler, M.; Hillemacher, T.; Kornhuber, J.; Bleich, S. N-methyl-d-aspartate 2b receptor subtype (NR2B) promoter methylation in patients during alcohol withdrawal. J. Neural Transm., 2009, 116(5), 615-622. doi: 10.1007/s00702-009-0212-2 PMID: 19350219
- Wang, K.S.; Liu, X.; Zhang, Q.; Wu, L.Y.; Zeng, M. Genome-wide association study identifies 5q21 and 9p24.1 (KDM4C) loci associated with alcohol withdrawal symptoms. J. Neural Transm., 2012, 119(4), 425-433. doi: 10.1007/s00702-011-0729-z PMID: 22072270
- Walker, L.C.; Lawrence, A.J. Investigational drug therapies in phase I and phase II clinical trials for alcohol use disorders. Expert Opin. Investig. Drugs, 2018, 27(8), 677-690. doi: 10.1080/13543784.2018.1502269 PMID: 30019949
- Kaplan, G.; Xu, H.; Abreu, K.; Feng, J.; Cohen-woods, S.; Covault, J. DNA epigenetics in addiction susceptibility. Front. Genet., 2022, 13(January), 806685. doi: 10.3389/fgene.2022.806685 PMID: 35145550
- Agudelo, M.; Gandhi, N.; Saiyed, Z.; Pichili, V.; Thangavel, S.; Khatavkar, P.; Yndart-Arias, A.; Nair, M. Effects of alcohol on histone deacetylase 2 (HDAC2) and the neuroprotective role of trichostatin A (TSA). Alcohol. Clin. Exp. Res., 2011, 35(8), no. doi: 10.1111/j.1530-0277.2011.01492.x PMID: 21447001
- Montagud-Romero, S.; Cantacorps, L.; Valverde, O. Histone deacetylases inhibitor trichostatin A reverses anxiety-like symptoms and memory impairments induced by maternal binge alcohol drinking in mice. J. Psychopharmacol., 2019, 33(12), 1573-1587. doi: 10.1177/0269881119857208 PMID: 31294671
- Sharma, R.; Sahota, P.; Thakkar, M.M. Chronic alcohol exposure reduces acetylated histones in the sleep-wake regulatory brain regions to cause insomnia during withdrawal. Neuropharmacology, 2020, 180, 108332. doi: 10.1016/j.neuropharm.2020.108332 PMID: 32961200
- Chen, W.-Y.; Zhang, H.; Gatta, E.; Glover, E. J.; Pandey, S. C.; Lasek, A. W. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) alleviates depression-like behavior and normalizes epigenetic changes in the hippocampus during ethanol withdrawal. Alcohol, 2019, 78, 79-87.
- Grayson, D.R.; Kundakovic, M.; Sharma, R.P. Is there a future for histone deacetylase inhibitors in the pharmacotherapy of psychiatric disorders? Mol. Pharmacol., 2010, 77(2), 126-135. doi: 10.1124/mol.109.061333 PMID: 19917878
- Qiu, X.; Xiao, X.; Li, N.; Li, Y. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 72, 60-72. doi: 10.1016/j.pnpbp.2016.09.002 PMID: 27614213
- Kazantsev, A.G.; Thompson, L.M. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat. Rev. Drug Discov., 2008, 7(10), 854-868. doi: 10.1038/nrd2681 PMID: 18827828
- Guan, S.P.; Kumar, S.N.; Fann, D.Y.; Kennedy, B.K. A mechanistic perspective on the health promoting effects of alcohol A focus on epigenetics modification. Alcohol, 2023, 107, 91-96. doi: 10.1016/j.alcohol.2022.07.009 PMID: 35987314
- Jeanblanc, J.; Lemoine, S.; Jeanblanc, V.; Alaux-Cantin, S.; Naassila, M. The class I-specific HDAC inhibitor MS-275 decreases motivation to consume alcohol and relapse in heavy drinking rats. Int. J. Neuropsychopharmacol., 2015, 18(9), pyv029. doi: 10.1093/ijnp/pyv029 PMID: 25762717
- Bourguet, E.; Ozdarska, K.; Moroy, G.; Jeanblanc, J.; Naassila, M. Class I HDAC inhibitors : Potential new epigenetic therapeutics for alcohol use disorder (AUD). J Med Chem, 2017, 61(5), 1745-1766. doi: 10.1021/acs.jmedchem.7b00115
- Rodriguez, F.D. Targeting epigenetic mechanisms to treat alcohol use disorders (AUD). Curr. Pharm. Des., 2021, 27(30), 3252-3272. doi: 10.2174/1381612827666210203142539 PMID: 33535943
- Yang, M.; Barrios, J.; Yan, J.; Zhao, W.; Yuan, S.; Dong, E.; Ai, X. Causal roles of stress kinase JNK2 in DNA methylation and binge alcohol withdrawal-evoked behavioral deficits. Pharmacol. Res., 2021, 164, 105375. doi: 10.1016/j.phrs.2020.105375 PMID: 33316384
- Qiao, X.; Yin, F.; Ji, Y.; Li, Y.; Yan, P.; Lai, J. 5-Aza-2′-deoxycytidine in the medial prefrontal cortex regulates alcohol-related behavior and Ntf3-TrkC expression in rats. PLoS One, 2017, 12(6), e0179469. doi: 10.1371/journal.pone.0179469 PMID: 28614398
- Schneeberger, Y.; Stenzig, J.; Hübner, F.; Schaefer, A.; Reichenspurner, H.; Eschenhagen, T. Pharmacokinetics of the experimental non-nucleosidic DNA methyl transferase inhibitor N -Phthalyl- L -Tryptophan (RG 108) in rats. Basic Clin. Pharmacol. Toxicol., 2016, 118(5), 327-332. doi: 10.1111/bcpt.12514 PMID: 26525153
- Barbier, E.; Tapocik, J.D.; Juergens, N.; Pitcairn, C.; Borich, A.; Schank, J.R.; Sun, H.; Schuebel, K.; Zhou, Z.; Yuan, Q.; Vendruscolo, L.F.; Goldman, D.; Heilig, M. DNA methylation in the medial prefrontal cortex regulates alcohol-induced behavior and plasticity. J. Neurosci., 2015, 35(15), 6153-6164. doi: 10.1523/JNEUROSCI.4571-14.2015 PMID: 25878287
- Berkel, T.D.M.; Pandey, S.C. Emerging role of epigenetic mechanisms in alcohol addiction. Alcohol. Clin. Exp. Res., 2017, 41(4), 666-680. doi: 10.1111/acer.13338 PMID: 28111764
- Avery, J. Naltrexone and alcohol use. Am. J. Psychiatry, 2022, 179(12), 886-887. doi: 10.1176/appi.ajp.20220821 PMID: 36453035
- Farris, S.P.; Pietrzykowski, A.Z.; Miles, M.F.; OBrien, M.A.; Sanna, P.P.; Zakhari, S.; Mayfield, R.D.; Harris, R.A. Applying the new genomics to alcohol dependence. Alcohol, 2015, 49(8), 825-836. doi: 10.1016/j.alcohol.2015.03.001 PMID: 25896098
- Shen, Y.C.; Fan, J.H.; Edenberg, H.J.; Li, T.K.; Cui, Y.H.; Wang, Y.F.; Tian, C.H.; Zhou, C.F.; Zhou, R.L.; Wang, J.; Zhao, Z.L.; Xia, G.Y. Polymorphism of ADH and ALDH genes among four ethnic groups in China and effects upon the risk for alcoholism. Alcohol. Clin. Exp. Res., 1997, 21(7), 1272-1277. doi: 10.1111/j.1530-0277.1997.tb04448.x PMID: 9347089
Қосымша файлдар
