Gas suction effect on the crossflow instability in flow past a swept wing

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of the swept wing boundary layer stability investigation are presented for the case, when the wing surface has a region of gas suction through the wall normal to the surface, while the wing is in Mach number 2 flow. In the flow regime considered the predominant boundary layer instability type is the crossflow instability. The gas suction effect on the development of unstable modes in the boundary layer is investigated using the linear stability theory and direct numerical modeling. The numerical modeling of laminar (undisturbed) flow fields with regions of gas suction and disturbed flow fields is carried out by integrating Navier–Stokes equations. An analysis within the framework of the linear stability theory is performed using the eN-method. The suction region location is varied with conservation of the integral intensity. It is shown that the mode instability growth can be considerably suppressed at the expense of an optimal disposition of the suction region.

全文:

受限制的访问

作者简介

A. Novikov

Zhukovski Central Aerohydrodynamic Institute; Moscow Institute of Physics and Technology

Email: obraz.ao@mipt.ru
俄罗斯联邦, Zhukovski, Moscow region, 140180; Moscow region, 141170

A. Obraz

Zhukovski Central Aerohydrodynamic Institute; Moscow Institute of Physics and Technology

Email: obraz.ao@mipt.ru
俄罗斯联邦, Zhukovski, Moscow region, 140180; Moscow region, 141170

D. Timokhin

Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: obraz.ao@mipt.ru
俄罗斯联邦, Moscow region, 141170

参考

  1. Устинов М.В. Управление ламинарно-турбулентным переходом на стреловидном крыле с помощью микрорельефа поверхности // Изв. РАН МЖГ. 2018. № 6. С. 43–54.
  2. Joslin R.D. Overview of Laminar Flow Control // NASA Tech. Pap. NASA/TP-1998-208705, 1998.
  3. Balakumar P., Hall P. Optimum Suction Distribution for Transition Control // Theor. Comput. Fluid Dyn. 1999. V. 13. P. 1–19. https://doi.org/10.1007/s001620050109
  4. Reynolds G.A., Saric W.S. Experiments on the Stability of the Flat-Plate Boundary Layer with Suction // AIAA J. 1986. V. 24. P. 202–207. https://doi.org/10.2514/3.9246
  5. Smith B.A. F-16XL flights could aid in HSCT design // Aviat. Week and Space Technol. Oct. 23, 1995. P. 42–44.
  6. Schülein E. Experimental Investigation of Laminar Flow Control on a Supersonic Swept Wing by Suction // 4th Flow Control Conference, 23–26 June 2008, Seattle, Washington. AIAA 2008–4208. https://doi.org/10.2514/6.2008-4208
  7. Hein S., Schülein E., Hanifi A., Sousa J., Arnal D. Laminar Flow Control by Suction at Mach 2. // CEAS/KATnet II Conference on Key Aerodynamic Technologies, 2009.
  8. Balakumar P. Control of Supersonic Boundary Layers Using Steady Suction // 36th AIAA Fluid Dynamics Conference and Exhibit. 2006. Conference Paper 20060022120.
  9. Новиков А.В., Образ А.О., Тимохин Д.А. Влияние отсоса пограничного слоя на неустойчивость поперечного течения на сверхзвуковом скользящем крыле // Уч. зап. ЦАГИ. 2023. Т. LIV. № 2. C. 16–23.
  10. Егоров И.В., Новиков А.В., Фёдоров А.В. Прямое численное моделирование ламинарно-турбулентного перехода при гиперзвуковых скоростях потока на супер-ЭВМ // ЖВМиМФ. 2017. Т. 57. № 8. С. 1347–1373. https://doi.org/10.7868/S0044466917080063
  11. Obraz A.O., Fedorov A.V. The high-speed flow stability (HSFS) software package for stability analysis of compressible boundary layers // TsAGI Sci. J. 2017. V. 48. P. 223–242. https://doi.org/10.1615/TsAGISciJ.2017022797
  12. Padhye A.R., Nayfeh A.H. Nonparallel stability of three-dimensional flows // AIAA Pap. 1981. Р. 81–1281.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024