Kinetic Theory of Expansion of Two-Component Plasma in a Plane Vacuum Diode
- Autores: Kokovin A.O.1, Kozhevnikov V.Y.1, Kozyrev A.V.1, Igumnov V.S.1, Semenyuk N.S.1
-
Afiliações:
- Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences
- Edição: Nº 6 (2023)
- Páginas: 183-191
- Seção: Articles
- URL: https://medjrf.com/1024-7084/article/view/672209
- DOI: https://doi.org/10.31857/S1024708423600446
- EDN: https://elibrary.ru/VAMYHA
- ID: 672209
Citar
Resumo
The results of study of the initial stage of expansion of a collisionless plasma with the electric current into a plane vacuum gap on the basis of kinetic equations for electrons and ions and the Poisson equation for the electric field are given. Self-consistent dynamics of a two-component plasma and electric field are theoretically modeled and the fundamental mechanism for establishing superthermal velocities of charged particles is described in detail. The parameters of anode-directed flows of positive ions in the cathode plume plasma are calculated. The expansion velocities of the cathode plume plasma observed in vacuum arcs at the level of (1−5) × 106 cm/s can be explained within the framework of the proposed collisionless mechanism.
Palavras-chave
Sobre autores
A. Kokovin
Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences
Email: Vasily.Y.Kozhevnikov@ieee.org
Tomsk, Russia
V. Kozhevnikov
Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences
Email: Vasily.Y.Kozhevnikov@ieee.org
Tomsk, Russia
A. Kozyrev
Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences
Email: Vasily.Y.Kozhevnikov@ieee.org
Tomsk, Russia
V. Igumnov
Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences
Email: Vasily.Y.Kozhevnikov@ieee.org
Tomsk, Russia
N. Semenyuk
Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: Vasily.Y.Kozhevnikov@ieee.org
Tomsk, Russia
Bibliografia
- Boxman R.L., Sanders D., Martin P. Vacuum Arc Science and Technology. Noyes, Park Ridge, NJ. 1995. 539 p.
- Месяц Г.А. Взрывная электронная эмиссия. М.: Физматлит. 2011. 280 с.
- Hantzsche E. Mysteries of the arc cathode spot: A retrospective glance // IEEE Trans. on Plasma Science. 2003. V. 31. № 531. P. 799–808.
- Oks E.M., Savkin K.P., Yushkov G.Y., Nikolaev A.G., Anders A. and Brown I.G. Measurement of total ion current from vacuum arc plasma sources // Rev. Sci. Instr. 2006. V. 77. № 3. P. 03B504.
- Окс Е.М., Юшков Г.Ю., Бугаев А.С., Кринберг И.А. О механизме ускорения ионов в плазме вакуумного дугового разряда // ДАН. 2001. Т. 378. № 1. С. 41–43.
- Anders A. Ion charge state distributions of vacuum arc plasmas: The origin of species // Phys. Rev. E. 1997. V. 55. № 1. P. 969–981.
- Власов А.А. О вибрационных свойствах электронного газа // УФН. 1967. Т. 93. № 3. С. 444–470.
- Kozhevnikov V.Yu., Kozyrev A.V., Semeniuk N.S. Modeling of Space Charge Effects in Intense Electron Beams: Kinetic Equation Method Versus PIC Method // IEEE Trans. on Plasma Science. 2017. V. 45. № 10. P. 2762–2766.
- Xiong T., Qiu J.M., Xu Z., Christlieb A. High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation // J. Comp. Phys. 2014. V. 273. P. 618–639.
- Yoshida H. Construction of higher order symplectic integrators // Phys. Lett. A. 1990. V. 150. № 5. P. 262–268.
- Калиткин Н.Н., Альшин А.Б., Альшина Е.А., Рогов Б.В. Вычисления на квазиравномерных сетках. М.: Физматлит. 2005. 224 с.
- Kozyrev A., Kozhevnikov V., Semeniuk N. Why do Electrons with “Anomalous Energies” appear in High-Pressure Gas Discharges? // EPJ Web of Conferences. 2018. V. 167. P. 01005.
- Zubarev N.M., Kozhevnikov V.Y., Kozyrev A.V., Mesyats G.A., Semeniuk N.S., Sharypov K.A. Mechanism and dynamics of picosecond radial breakdown of a gas-filled coaxial line // Plasma Sour. Sci. Tech. 2020. V. 29. № 12. P. 125008.
- Баренгольц С.А., Казаринов Н.Ю., Месяц Г.А., Перельштейн Э.А., Шевцов В.Ф. Моделирование процесса формирования глубокой потенциальной ямы в вакуумном диоде // Письма в ЖТФ. 2005. Т. 31. № 4. С. 64–70.
- Михайловский А.Б. Теория плазменных неустойчивостей: Т. 1 // М.: Атомиздат, 1970. 294 с.
Arquivos suplementares
