Estimation of the Maximum Migration Distance of a Finite Volume of Light Fluid in a Saturated Porous Medium
- Authors: Afanasyev A.A.1, Vedeneeva E.A.1, Mikheev I.E.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: No 5 (2024)
- Pages: 41-51
- Section: Articles
- URL: https://medjrf.com/1024-7084/article/view/681534
- DOI: https://doi.org/10.31857/S1024708424050048
- EDN: https://elibrary.ru/NQXRGA
- ID: 681534
Cite item
Abstract
Flow of a light fluid through a porous medium saturated with another (heavy) fluid is studied. The one-dimensional formulation of the problem describing two-phase flow in a vertical isolated porous column is considered. Assuming that the volume of light liquid is finite, its maximum upward motion under the action of the buoyancy force is estimated. A simple method for approximate estimate of this migration distance is proposed. It is shown that it is determined by only a single dimensionless number (similarity criterion) over a wide range of fluid and porous medium parameters, and the effect of other parameters is small. The dependence of the maximum migration distance on the distingushed similarity criterion is calculated. The results of study can be useful in estimating the maximum distance over which the injected gas propagates from the well through a water-saturated formation.
Full Text

About the authors
A. A. Afanasyev
Lomonosov Moscow State University
Author for correspondence.
Email: afanasyev@imec.msu.ru
Russian Federation, Moscow
E. A. Vedeneeva
Lomonosov Moscow State University
Email: el-vedeneeva@imec.msu.ru
Russian Federation, Moscow
I. E. Mikheev
Lomonosov Moscow State University
Email: afanasyev@imec.msu.ru
Russian Federation, Moscow
References
- Bickle M.J. Geological carbon storage // Nat. Geosci. 2009. V. 2. № 12. P. 815–818. doi: 10.1038/ngeo687.
- Bachu S., Bonijoly D., Bradshaw J., Burruss R., Holloway S., Christensen N.P., Mathiassen O.M. CO2 storage capacity estimation: Methodology and gaps // Int. J. Greenh. Gas Control. 2007. V. 1. № 4. P. 430–443. doi: 10.1016/S1750-5836(07)00086-2.
- Afanasyev A., Penigin A., Dymochkina M., Vedeneeva E., Grechko S., Tsvetkova Yu., Mikheev I., Pavlov V., Boronin S., Belovus P., Osiptsov A. Reservoir simulation of the CO2 storage potential for the depositional environments of West Siberia // Gas Sci. Eng. 2023. V. 114. 204980. doi: 10.1016/j.jgsce.2023.204980.
- Huppert H.E., Neufeld J.A. The fluid mechanics of carbon dioxide sequestration // Annu. Rev. Fluid Mech. 2014. V. 46. P. 255–272. doi: 10.1146/annurev-fluid-011212-140627.
- Afanasyev A., Vedeneeva E., Grechko S. Scaling analysis for a 3-D CO2 plume in a sloping aquifer at a late stage of injection // J. Nat. Gas Sci. Eng. 2022. V. 106. 104740. doi: 10.1016/j.jngse.2022.104740.
- Afanasyev A., Vedeneeva E., Mikheev I. Monte Carlo simulation of the maximum migration distance of CO2 in a sloping aquifer // Gas Sci. Eng. 2023. V. 117. 205078. doi: 10.1016/j.jgsce.2023.205078.
- Killough J.E. Reservoir Simulation With History-Dependent Saturation Functions // Soc. Pet. Eng. J. 1976. V. 16. № 1. P. 37–48. doi: 10.2118/5106-pa.
- Buckley S.E., Leverett M.C. Mechanism of fluid displacement in sands // Trans. 1942. V. 146. P. 107-116. doi: 10.2118/942107-G.
- Баренблат Г.И., Ентов В.М., Рыжик В.М. Движение жидкостей и газов в природных пластах. М.: Недра, 1984. 211 с.
- Афанасьев А.А., Султанова Т.В. Исследование нестационарного двухмерного вытеснения в пористой среде в автомодельной постановке // Изв. РАН МЖГ. 2017. № 4. С. 62-72. doi: 10.7868/S0568528117040065.
- Brooks R., Corey A. Hydraulic properties of porous media // Hydrology Papers, Colorado State University. 1964. № 3. 27 p.
Supplementary files
