Two-layer equilibrium model of miscible inhomogeneous fluid flow

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Two-layer flow of a density-stratified fluid with mass transfer between the layers is considered. In the Boussinesq approximation, the equations of motion are reduced to a homogeneous quasilinear system of partial differential equations of mixed type. The flow parameters in the intermediate mixed layer are determined from the equilibrium conditions in a more general model of three-layer flow of a miscible fluid. In particular, the equilibrium conditions imply the constancy of the interlayer Richardson number in velocity-shift flows. A self-similar solution to the problem of breakdown of an arbitrary discontinuity (the lock-exchange problem) in the domain of hyperbolicity of the system under consideration is constructed. The transcritical flow regimes over a local obstacle are studied and the conditions under which the obstacle determines the upstream flow are determined. A comparison of steady-state and time-dependent solutions with the solutions obtained for the original three-layer models of miscible fluid flow is carried out.

About the authors

V. Yu. Liapidevskii

Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: liapid@hydro.nsc.ru
Russian Federation, Novosibirsk

References

  1. Helfrich K.R., Melville W.K. Long nonlinear internal waves // Ann. Rev. Fluid Mech. 2006. V. 38. P. 395–425. https://doi.org/10.1146/annurev.fluid.38.050304.092129
  2. Thorpe S.A., Li Lin. Turbulent hydraulic jumps in a stratified shear flow. Part 2 //J. Fluid Mech. 2014. V. 758. P. 94–120. https://doi.org/10.1017/jfm.2014.502
  3. Baines P.G. Internal hydraulic jumps in two-layer systems // J. Fluid Mech. 2016. V. 787. P. 1–15. https://doi.org/10.1017/jfm.2015.662
  4. Ogden K.A., Helfrich K.R. Internal hydraulic jumps in two-layer flows with increasing upstream shear // Phys. Rev. Fluids. 2020. V. 5. 074803. https://doi.org/10.1103/PhysRevFluids.5.074803
  5. Lawrence G.A., Armi L. Stationary internal hydraulic jumps // J. Fluid Mech. 2022. V. 936. A25. https://doi.org/10.1017/jfm.2022.74
  6. Rastello M., Hopfinger E.J. Sediment-entraining suspension clouds: a model of powder-snow avalanches // J. Fluid. Mech. 2004. V. 509. P. 181–206. https://doi.org/10.1017/S0022112004009322
  7. Ermanyuk E.V., Gavrilov N.V. A note on the propagation speed of a weakly dissipative gravity current // J. Fluid Mech. 2007. V. 574. P. 393–403. https://doi.org/10.1017/S0022112006004198
  8. Dai A. Experiments on gravity currents propagating on different bottom slopes // J. Fluid Mech. 2013. 731 pp. 117–141. https://doi.org/10.1017/jfm.2013.372
  9. Zhu R., He Z., Meiburg E. Mixing, entrainment and energetics of gravity currents released from two-layer stratified locks // J. Fluid Mech. 2023. V. 960. A1. https://doi.org/10.1017/jfm.2023.146
  10. Turner J.S. Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows // J. Fluid Mech. 1986. V. 183. P. 431–471. https://doi.org/10.1017/S0022112086001222
  11. Baines P.G. Topographic effects in stratified flows. Cambridge Univ. Press, 1995. 500 p. doi: 10.1017/9781108673983
  12. Klymak M., Moum J.N. Internal solitary waves of elevation advancing on a shoaling shelf // Geophys. Res. Lett. 2003. V. 30, Issue 20. 2045. https://doi.org/10.1029/2003GL017706
  13. Bourgault D., Kelley D.E., Galbraith P.S. Interfacial solitary wave run-up in the St. Lawrence Estuary // J. Marine Res. 2005. V. 63. P. 1001–1015. doi: 10.1357/002224005775247599
  14. Lamb K. Shoaling solitary internal waves: on a criterion for the formation of waves with trapped cores // J. Fluid Mech. 2003. V. 478. P. 81–100. https://doi.org/10.1017/S0022112002003269
  15. Ляпидевский В.Ю., Храпченков Ф.Ф., Чесноков А.А., Ярощук И.О. Моделирование нестационарных гидрофизических процессов на шельфе Японского моря // Изв. РАН. МЖГ. 2022. № 1. С. 57–68. https://doi.org/10.31857/S0568528122010066
  16. Кириллов В.В., Ляпидевский В.Ю., Суторихин И.А., Храпченков. Ф.Ф. Особенности трансформации нелинейных внутренних волн на шельфе и в глубоком озере // Изв. РАН. МЖГ. 2023. № 6. С. 121–131. doi: 10.31857/S1024708423600537
  17. Parker G., Fukushima Y., Pantin H.M. Self-accelerating turbidity currents // J. Fluid Mech. 1986. V. 171. P. 145–81. https://doi.org/10.1017/S0022112086001404
  18. Liapidevskii V. Yu., Dutykh D. On the velocity of turbidity currents over moderate slopes // Fluid Dyn. Res. 2019. V. 51, № 3. 035501. doi: 10.1088/1873-7005/ab0091
  19. Уизем Дж. Линейные и нелинейные волны. Пер. с англ. М; Мир, 1977. 621 с.
  20. Ляпидевский В.Ю., Чесноков А.А. Равновесная модель слоя смешения в сдвиговом течении стратифицированной жидкости // ПМТФ. 2024. doi: 10.15372/PMTF202315412
  21. Ляпидевский В.Ю. Равновесная модель плотностного течения // Труды МИАН. 2023. Т. 322. № 6. С. 167–189. https://doi.org/10.4213/tm4303
  22. Ляпидевский В.Ю., Тешуков В.М. Математические модели распространения длинных волн в неоднородной жидкости. Изд-во СО РАН, Новосибирск, 2000, 420 с.
  23. Baines P.G. A unified description of two-layer flow over topography // J. Fluid Mech. 1984. V. 146. P. 127–167. https://doi.org/10.1017/S0022112084001798
  24. Lax P.D. Hyperbolic systems of conservation laws II// Comm. Pure Appl. Math. 1957. V. 10. P. 537–566. https://doi.org/10.1002/cpa.3160100406
  25. Рождественский Б.Л., Яненко Н.Н. Системы квазилинейных уравнений и их приложение к газовой динамике. М.: Наука, 1978. 687 c.
  26. Гаврилюк С.Л. Задача о распаде произвольного разрыва для газа Ван-дер-Ваальса // Динамика жидкости со свободными границами. Новосибирск: Ин-т гидродинамики СО АН СССР, 1985. С. 36–54. (Динамика сплошной среды; Вып. 69).
  27. Ляпидевский В.Ю. Течение Куэтта вязкоупругой среды максвелловского типа с двумя временами релаксации // Труды МИ АН. 2018, Т. 300. С. 146–157. doi: 10.1134/S0371968518010119
  28. Bukreev V.I, Gusev A.V., Liapidevskii V. Yu. Blocking effects in supercritical flows over topography // PIV and Modeling Water Wave Phenomena, Proc. of the Int. Symp. (Cambridge, UK, April 18–19, 2002), Univ. of Oslo (2002). P. 86–90.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences