EXACT SOLUTION OF THE PROBLEM OF VAPOR FLOW THROUGH A GAP BETWEEN AN EVAPORATING DROPLET OF LIQUID AND A HOT WALL

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Vapor flow in a gap between a liquid droplet and a hot wall caused by evaporation of liquid is considered. It is assumed that the wall temperature is higher than the minimum film boiling temperature, and there is no direct contact with liquid. In particular, the problem of such a flow arises in modeling post-crisis heat transfer, when droplets from a vapor-liquid flow fall onto the heated surface and partially evaporate on it, making a significant contribution to heat transfer. Within the framework of the problem under consideration, the gap between the droplet and the wall is assumed to be plane, and the vapor flow to be laminar and axisymmetric. An exact solution to the corresponding hydrodynamic problem is given.

About the authors

A. V Palagin

Nuclear Safety Institute of the Russian Academy of Sciences

Email: palagin@ibrae.ac.ru
Moscow, Russia

References

  1. Кириллов П.Л., Богословская Г.П. Тепломассообмен в ядерных энергетических установках. М.: Энергоатомиздат, 2000. 456 с.
  2. Kataoka I., MamoruIshii, Mishima K. Generation and size distribution of droplet in annular two-phase flow // J. Fluids Eng. 1983. V 105. P 231-238.
  3. Wachters L.H.J., Westerling N.A.J. The heat transfer from a hot wall to impinging water drops in the spheroidal state // Chem. Eng. Sci. 1966. V. 21. P. 1047-1056.
  4. Makino K., Michiyoshi I. The behavior of a water droplet on heated surfaces // Int. J. Heat Mass Transfer. 1984. V. 27. P. 781-791.
  5. Ge Y., Fan L. S. Three-dimensional simulation of impingement of a liquid droplet on a flat surface in the Leidenfrost regime // Phys. Fluids. 2005. V. 17. P. 027104.
  6. Tran T., Staat H.J.J., Susarrey-Arce A., Foertsch T.C., Van Houselt A., Gardeniers H.J.G.E., Prosperetti A., Lohse D., Sun C. Droplet impact on superheated micro-structured surfaces // Soft Matter. 2013. V. 9. P. 3272-3282.
  7. Liang G., Mudawar I. Review of drop impact on heated walls // Int. J. Heat Mass Transfer. 2017. V. 106. P. 103-126.
  8. Biance A.-L., Chevy F., Clanet C., Lagubeau G. and Quere D. On the elasticity of an inertial liquid shock // J. Fluid Mech. 2006. V. 554. P. 47-66.
  9. Chatzikyriakou D., Walker S.P., Hale C.P., Hewitt G.F. The measurement of heat transfer from hot surfaces to nonwetting droplets // Int. J. Heat Mass Transfer. 2011. V. 54 P. 1432-1440.
  10. Aerodynamic Theory, Volume III, Durand W.F., Editor-in-Chef, Berlin, Julius Springer, 1935. 354 с.
  11. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: Т. VI. Гидродинамика. М.: ФИЗМАТЛИТ, 2001. 736 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences