EFFECT OF ACOUSTIC EXCITATION ON COLLIDING LAMINAR MICROJETS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of studies of the jet formation process during the interaction of two colliding axisymmetric laminar air microjets. The axes of symmetry of the tubes lie in the same plane and intersect at an angle of 60°. The distance between the near ends of the tubes is equal to 4 mm. The outflow with identical velocities was implemented. As a result of the experiment, the distinctive features of the secondary jet formation under natural conditions and under the impact of an external periodic disturbance were revealed. It was found that the resulting jet is formed in the plane orthogonal to the tubes. Under natural conditions, a secondary jet with a beam angle greater than 115° is formed and represents a flattened jet. In the case of the external impact by a periodic acoustic signal, after the interaction of the microjets, a slight flattening appears with the development of secondary oscillations in the orthogonal plane and subsequent rotation with respect to the plane of the tubes.

Sobre autores

M. Litvinenko

Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of Russian Academy of Sciences

Email: litur@itam.nsc.ru
Novosibirsk, Russia

A. Smyatskikh

Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of Russian Academy of Sciences

Novosibirsk, Russia

Yu. Litvinenko

Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of Russian Academy of Sciences

Novosibirsk, Russia

Bibliografia

  1. Абиев Р.Ш., Альмяшева О.В., Гусаров В.В., Изотова С.Г. Способ получения нанопорошков феррита кобальта и микрореактор для его реализации // Патент на изобретение № RU 2625981 2017. C1. 20.07.2017
  2. Kozlov V.V., Litvinenko Y.A., Katasonov M.M. et al Distinctive Features of Plume Formation on Collision of Two Laminar Gas Jets // Fluid. Dyn. 2023. V58. № 4. P 634-639. https://doi.org/10.1134/S0015462823700076
  3. Cohen J., Wygnanski I. The evolution of instabilities in the axisymmetric jet // J. Fluid. Mech. 1987. V. 176. P. 191-219.
  4. Ginevsky A. S., Vlasov Y. V., Karavosov R. K. Acoustic Control of Turbulent Jets //Springer. 2004. 235 p.
  5. Kozlov V.V., Grek G.R., Litvinenko Yu.A. Visualization of Conventional and Combusting Subsonic Jet Instabilities // Dordrecht: Springer International Publishing. 2016. 126p. (Springer Briefs in Applied Sciences and Technology).
  6. Smith B.L., Glezer A. Jet vectoring using synthetic jets // J. Fluid. Mech. 2002. V. 458. P. 1-34.
  7. Reynolds W.C., Parekh D.E., Juvet P.J.D., Lee M.J.D. Bifurcating and blooming jets //Annu. Rev. Fluid Mech. 2003. V. 35. P. 295-315.
  8. Грек Г.Р., Козлов В.В., Литвиненко Ю.А. Устойчивость дозвуковых струйных течений и горение // Учеб. пособ. 2-е изд., перераб. и доп. М.: Новосиб. гос. ун-т. Новосибирск, 2013. 240 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024