Complex Diagnostics of Silicon-on-Insulator Layers after Ion Implantation and Annealing
- Autores: Yunin P.A.1, Drozdov M.N.1, Novikov A.V.1, Shmagin V.B.1, Demidov E.V.1, Mikhailov A.N.2, Tetelbaum D.I.2, Belov A.I.2
-
Afiliações:
- Institute for Physics of Microstructures, RAS
- N.I. Lobachevsky Nizhny Novgorod State University
- Edição: Nº 5 (2024)
- Páginas: 61-68
- Seção: Articles
- URL: https://medjrf.com/1028-0960/article/view/664643
- DOI: https://doi.org/10.31857/S1028096024050094
- EDN: https://elibrary.ru/FTWLJO
- ID: 664643
Citar
Resumo
A technology was developed for activating ion-implanted dopants in silicon-on-insulator layers at a low annealing temperature (600°C) using the pre-amorphization technique of a silicon device layer. In the case of phosphorus implantation, silicon was amorphized directly by dopant ions. In the case of boron implantation for pre-amorphization, the layers were preliminary irradiated with argon or fluorine ions. Complex diagnostics of the implanted layers was carried out using secondary ion mass spectrometry, X-ray diffractometry and small-angle X-ray reflectometry. The combination of methods made it possible to characterize the impurity distribution, the degree of silicon crystallinity, the layer thicknesses, and the interface widths in structures. The results of diagnostics of the structure and composition correlate well with calculations in the SRIM software package and the electrophysical characteristics of the layers after annealing. It was shown that the use of argon for pre-amorphization of silicon interfered with the recrystallization process and did not make it possible to achieve acceptable electrical characteristics of the doped layer. Amorphization with phosphorus and pre-amorphization with fluorine during boron implantation allowed obtaining the required values of the resistance of the doped layers after annealing at a temperature of 600°C. The use of a complex approach made it possible to optimize the modes of amorphization, ion doping, and annealing of silicon-on-insulator structures at low temperatures, necessary for the creation of light-emitting device structures based on silicon-germanium nanoislands.
Texto integral

Sobre autores
P. Yunin
Institute for Physics of Microstructures, RAS
Autor responsável pela correspondência
Email: yunin@ipmras.ru
Rússia, Nizhny Novgorod
M. Drozdov
Institute for Physics of Microstructures, RAS
Email: yunin@ipmras.ru
Rússia, Nizhny Novgorod
A. Novikov
Institute for Physics of Microstructures, RAS
Email: yunin@ipmras.ru
Rússia, Nizhny Novgorod
V. Shmagin
Institute for Physics of Microstructures, RAS
Email: yunin@ipmras.ru
Rússia, Nizhny Novgorod
E. Demidov
Institute for Physics of Microstructures, RAS
Email: yunin@ipmras.ru
Rússia, Nizhny Novgorod
A. Mikhailov
N.I. Lobachevsky Nizhny Novgorod State University
Email: yunin@ipmras.ru
Rússia, Nizhny Novgorod
D. Tetelbaum
N.I. Lobachevsky Nizhny Novgorod State University
Email: yunin@ipmras.ru
Rússia, Nizhny Novgorod
A. Belov
N.I. Lobachevsky Nizhny Novgorod State University
Email: yunin@ipmras.ru
Rússia, Nizhny Novgorod
Bibliografia
- Зорин Е.И., Павлов П.В., Тетельбаум Д.И. Ионное легирование полупроводников. М.: Энергия, 1975. 129 с.
- Wolf S., Tauber R.N. Silicon Processing for the VLSI Era. Vol. 1. Process Technology, 2000.
- Hemmet P., Lysenko V.S., Nazarov A.N. Perspective Science and Technologies for Novel Silicon on Insulator Devices. Dordrecht: Springer Science and Business Media, 2012.
- Wang Q.-Y., Nie J.-P., Yu F., Liu Z.-L., Yu Y.-H. // Mater. Sci. Engin. B. 2000. V. 72. P. 189. https://doi.org/10.1016/s0921-5107(99)00511-5
- Shemukhin A.A., Nazarov A.V., Balakshin Y.V., Chernysh V.S. // Nucl. Instrum. Methods Phys. Res. B. 2015. V. 354. P. 274. https://doi.org/10.1016/j.nimb.2014.11.090
- Plummer J.D., Deal M., Griffin P.D. Silicon VLSI Technology: Fundamentals, Practice and Modeling. Pearson, 2000.
- Woodard E.M., Manley R.G., Fenger G., Saxer R.L., Hirschman K.D., Dawson-Elli D., Couillard J.G. // 2006 16th Biennial University/Government/Industry Microelectronics Symposium. San Jose, CA, USA, 25–28 June, 2006. P. 161. https://doi.org/10.1109/UGIM.2006.4286374
- Heiermann W., Buca D., Trinkaus H., Holländer B., Breuer U., Kernevez N., Ghyselen B., Mantl S. // ECS Trans. 2009. V. 19. P. 95. https://doi.org/10.1149/1.3118935
- Wang Y., Liao X., Ma Z., Yue G., Diao H., He J., Kong G., Zhao Y., Li Z., Yun F. // Appl. Surf. Sci. 1998. V. 135. P. 205. https://doi.org/10.1016/s0169-4332(98)00230-x
- Смагина Ж.В., Зиновьев В.А., Степихова М.В., Перетокин А.В., Дьяков С.А., Родякина Е.Е., Новиков А.В., Двуреченский А.В. // Физика и техника полупроводников. 2021. Т. 55. Вып. 12. C. 1210. https://doi.org/10.21883/FTP.2021.12.51707.9722
- Smagina Z.V., Zinovyev V.A., Zinovieva A.F., Stepikho-va M.V., Peretokin A.V., Rodyakina E.E., Dyakov S.A., Novikov A.V., Dvurechenskii A.V. // J. Luminescence. 2022. V. 249. P. 119033. https://doi.org/10.1016/j.jlumin.2022.119033
- Xu X., Usami N., Maruizumi T., Shiraki Y. // J. Cryst. Growth. 2013. V. 378. P. 636. https://doi.org/10.1016/j.jcrysgro.2012.11.002
- Miyao M., Yoshihiro N., Tokuyama T., Mitsuishi T. // J. Appl. Phys. 1979. V. 50. P. 223. https://doi.org/10.1063/1.325703
- Ebiko Y., Suzuki K., Sasaki N. // IEEE Trans. Electron Devices. 2005. V. 52. P. 429. https://doi.org/10.1109/TED.2005.843870
- Шемухин А.А., Назаров А.В., Балакшин Ю.В., Черныш В.С. // Поверхность. Рентген., синхротор. и нейтрон. исслед. 2014. № 3. С. 56. https://doi.org/10.7868/S0207352814030214
- Hamilton J.J., Collart E.J.H., Colombeau B., Bersani M., Giubertoni D., Kah M., Cowern N.E.B., Kirkby K.J. // MRS Proc. 2011. V. 912. P. 0912-C01. https://doi.org/10.1557/PROC-0912-C01-10
- Sultan A., Banerjee S., List S., Pollack G., Hosack H. // Proc. 11th Int. Conf. on Ion Implantation Technology. Austin, TX, USA, 16–21 June, 1996. P. 25. https://doi.org/10.1109/IIT.1996.586104
- Абросимова Н.Д., Юнин П.А., Дроздов М.Н., Оболенский С.В. // Физика и техника полупроводников. 2022. Т. 56. С. 753. https://doi.org/10.21883/FTP.2022.08.53140.26
- Юнин П.А., Дроздов Ю.Н., Дроздов М.Н., Королев С.А., Лобанов Д.Н. // Физика и техника полупроводников. 2013. Т. 47. Вып. 12. С. 1580.
- Юнин П.А., Дроздов Ю.Н., Новиков А.В., Юрасов Д.В. // Поверхность. рентген., синхротрон. и нейтрон. исслед. 2012. № 6. C. 36.
- Юнин П.А., Дроздов Ю.Н., Дроздов М.Н., Новиков А.В., Юрасов Д.В. // Поверхность. Рентген., синхротрон. и нейтрон. исслед. 2012. № 7. C. 26.
- Панкратов Е.Л., Гуськова О.П., Дроздов М.Н., Абросимова Н.Д., Воротынцев В.М. // Физика и техника полупроводников. 2014. Т. 48. Вып. 5. С. 631.
- Ziegler J.F., Ziegler M.D., Biersack J.P. // Nucl. Instrum. Methods Phys. Res. B. 2010. V. 268. P. 1818. https://doi.org/10.1016/j.nimb.2010.02.091
- Boberg G., Stolt L., Tove P. A., Norde H. // Phys. Scripta. 1981. V. 24. P. 405. https://doi.org/10.1088/0031-8949/24/2/012
- Андреев А.Н., Растегаева М.Г., Растегаев В.П., Решанов С.А. // Физика и техника полупроводников. 1998. Т. 32. С. 832.
- Окулич Е.В., Окулич В.И., Тетельбаум Д.И. // Физика и техника полупроводников. 2020. Т. 54. Вып. 8. С. 771.
- https://doi.org/10.21883/FTP.2020.08.49649.9338
- Revesz P., Wittmer M., Roth J., Mayer J.W. // J. Appl. Phys. 1978. V. 49. P. 5199. https://doi.org/10.1063/1.324415
- Cullis A.G., Seidel T.E., Meek R.L. // J. Appl. Phys. 1978. V. 49. P. 5188. https://doi.org/10.1063/1.324414
Arquivos suplementares
