Synthesis of hydride phases based on TiZrNbMoTa high-entropy alloy
- Autores: Lushnikov S.A.1, Filippova T.V.1
-
Afiliações:
- Lomonosov Moscow State University
- Edição: Nº 9 (2024)
- Páginas: 73-79
- Seção: Articles
- URL: https://medjrf.com/1028-0960/article/view/664749
- DOI: https://doi.org/10.31857/S1028096024090097
- EDN: https://elibrary.ru/EHSJRU
- ID: 664749
Citar
Resumo
A high-entropy TiZrNbMoTa alloy with a body-centered cubic lattice has been synthesized. The interaction of the alloy with hydrogen is accompanied by the formation of samples containing hydride phases with tetragonal and cubic lattice. Hydrogen desorption from the hydride at high temperature leads to the formation of fine metal powder of the original alloy with a cubic lattice. Samples of the alloy and hydride phases were analyzed by X-ray diffraction and electron microscopy.
Palavras-chave
Texto integral

Sobre autores
S. Lushnikov
Lomonosov Moscow State University
Autor responsável pela correspondência
Email: lushnikov@hydride.chem.msu.ru
Rússia, Moscow, 119991
T. Filippova
Lomonosov Moscow State University
Email: lushnikov@hydride.chem.msu.ru
Rússia, Moscow, 119991
Bibliografia
- Miracle D.B., Senkov O.N. // Acta Materialia. 2017. V. 122. P. 448. https://doi/org/10.1016/j.actamat.2016.08.081
- Xu Z.Q., Ma Z.L., Wang M., Chen Y.W., Tan Y.D. // Mater. Sci. Engin. A. 2019. V. 755. № 7. P. 925. https://doi/org/10.1126/science.abe5323
- Son S., Lee D., Kwon H., Moon J., Park K.B., Kim A., Choi J., Jeong J-H., Cho S., Kim H.S. // J. Alloys. Compd. 2023. V. 935. Р. 168089. https://doi/org/10.1016/j.jallcom.2022.168089
- Yao K., Zhang Y., Liu L., Zhang X., Duan K., Liu B., Qi J., Zhao Z, Wu F. // J. Alloys. Compd. 2023. V. 947. Р. 169616. https://doi/org/10.1016/j.jallcom.2022.168089
- Yan X., Zhang Y. // Scripta Materialia. 2020. V. 178. P. 329. https://doi/org/10.1016/j.scriptamat.2019.11.059
- Shen H., Zhang J., Hu J., Zhang J., Mao Y., Xiao H., Zhou X., Zu X. // Nanomaterials. 2019. V. 9. P. 248. https://doi/org/10.3390/nano90202482
- Gorban V.F., Krapivka N.A., Firstova S.A., Kurilenkoa D.V. // Phys. Metals Metallogr. 2018. V. 119. № 5. P. 477. https://doi/org/10.1134/S0031918X18050046
- Yan X.H., Li J.S., Zhang W.R., Zhang Y. // Mater. Chem. Phys. 2018. V. 210. P. 12. https://doi/org/10.1016/j.matchemphys.2017.07.078
- Rempel A.A., Gel’chinskii B.R. // Izvestiya. Ferrous Metall. 2020. V. 63. № 3–4. P. 248. https://doi/org/10.17073/0368-0797-2020-3-4-248-253
- Kunce I., Polanski M., Bystrzycki J. // Int. J. Hydrogen Energy. 2013. V. 38. Iss. 27. P. 12180. https://doi/org/10.1016/j.ijhydene.2013.05.071
- Kucza W. // J. Alloys Compd. 2022. V. 894. Р. 162443. https://doi/org/10.1016/j.jallcom.2021.162443
- Zhang Y., Zhou Y.J., Lin J.P., Chen G.L., Liaw P.K. // Adv. Eng. Mater. 2008. V. 10. P. 534. https://doi/org/10.1002/adem.200700240
- Zhang L.C., Chen L.Yu. // Adv. Eng. Mater. 2019. V. 21. P. 1801215. https://doi/org/10.1002/adem.201801215
- Pineda F., Martínez C., Martin P., Aguilar C. // Rev. Adv. Mater. Sci. 2023. V. 62. P. 1. https://doi/org/10.1515/rams-2023-0150
- Zlotea C., Sow M.A., Ek G., Couzinie J.P., Perriere L., Guillot I., Bourgon J., Møller K.T., Jensen T.R., Akiba E. // J. Alloys. Compd. 2019. V. 775. P. 667. https://doi/org/10.1016/j.jallcom.2018.10.108
- Luo H., Li Z., Raabe D. // Sci Rep. 2017. V. 29. № 7 (1). P. 9892. https://doi/org/10.1038/s41598-017-10774-4
- Nygårda M.M., Sławinski W.A., Ekc G., Sørbya M.H. Sahlbergc M., Keend D.A., Hauback B.C. // Acta Materialia. 2020. V. 199. P. 540. https://doi/org/10.1016/j.actamat.2020.08.045
- Zlotea C., Sow M.A., Ek G., Couzinié J-P. et al. // J. Alloys Compd. 2019. V. 775. P. 667. https://doi/org/10.1016/j.jallcom.2018.10.108
- Somenkov V.A. // Ber. Bunsen. Phys. Chem. 1972. V. 76. P. 733. https://doi/org/10.1002/CHIN.197247005
- Соменков В.А., Шильштейн С.Ш. // Физика металлов и металловедение. 1988. Т. 65. № 1. С. 132.
- Соменков В.А., Шильштейн С.Ш. // Физика металлов и металловедение. 1998. Т. 86. № 3. С. 114.
Arquivos suplementares
