Synthesis of hydride phases based on TiZrNbMoTa high-entropy alloy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A high-entropy TiZrNbMoTa alloy with a body-centered cubic lattice has been synthesized. The interaction of the alloy with hydrogen is accompanied by the formation of samples containing hydride phases with tetragonal and cubic lattice. Hydrogen desorption from the hydride at high temperature leads to the formation of fine metal powder of the original alloy with a cubic lattice. Samples of the alloy and hydride phases were analyzed by X-ray diffraction and electron microscopy.

Texto integral

Acesso é fechado

Sobre autores

S. Lushnikov

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: lushnikov@hydride.chem.msu.ru
Rússia, Moscow, 119991

T. Filippova

Lomonosov Moscow State University

Email: lushnikov@hydride.chem.msu.ru
Rússia, Moscow, 119991

Bibliografia

  1. Miracle D.B., Senkov O.N. // Acta Materialia. 2017. V. 122. P. 448. https://doi/org/10.1016/j.actamat.2016.08.081
  2. Xu Z.Q., Ma Z.L., Wang M., Chen Y.W., Tan Y.D. // Mater. Sci. Engin. A. 2019. V. 755. № 7. P. 925. https://doi/org/10.1126/science.abe5323
  3. Son S., Lee D., Kwon H., Moon J., Park K.B., Kim A., Choi J., Jeong J-H., Cho S., Kim H.S. // J. Alloys. Compd. 2023. V. 935. Р. 168089. https://doi/org/10.1016/j.jallcom.2022.168089
  4. Yao K., Zhang Y., Liu L., Zhang X., Duan K., Liu B., Qi J., Zhao Z, Wu F. // J. Alloys. Compd. 2023. V. 947. Р. 169616. https://doi/org/10.1016/j.jallcom.2022.168089
  5. Yan X., Zhang Y. // Scripta Materialia. 2020. V. 178. P. 329. https://doi/org/10.1016/j.scriptamat.2019.11.059
  6. Shen H., Zhang J., Hu J., Zhang J., Mao Y., Xiao H., Zhou X., Zu X. // Nanomaterials. 2019. V. 9. P. 248. https://doi/org/10.3390/nano90202482
  7. Gorban V.F., Krapivka N.A., Firstova S.A., Kurilenkoa D.V. // Phys. Metals Metallogr. 2018. V. 119. № 5. P. 477. https://doi/org/10.1134/S0031918X18050046
  8. Yan X.H., Li J.S., Zhang W.R., Zhang Y. // Mater. Chem. Phys. 2018. V. 210. P. 12. https://doi/org/10.1016/j.matchemphys.2017.07.078
  9. Rempel A.A., Gel’chinskii B.R. // Izvestiya. Ferrous Metall. 2020. V. 63. № 3–4. P. 248. https://doi/org/10.17073/0368-0797-2020-3-4-248-253
  10. Kunce I., Polanski M., Bystrzycki J. // Int. J. Hydrogen Energy. 2013. V. 38. Iss. 27. P. 12180. https://doi/org/10.1016/j.ijhydene.2013.05.071
  11. Kucza W. // J. Alloys Compd. 2022. V. 894. Р. 162443. https://doi/org/10.1016/j.jallcom.2021.162443
  12. Zhang Y., Zhou Y.J., Lin J.P., Chen G.L., Liaw P.K. // Adv. Eng. Mater. 2008. V. 10. P. 534. https://doi/org/10.1002/adem.200700240
  13. Zhang L.C., Chen L.Yu. // Adv. Eng. Mater. 2019. V. 21. P. 1801215. https://doi/org/10.1002/adem.201801215
  14. Pineda F., Martínez C., Martin P., Aguilar C. // Rev. Adv. Mater. Sci. 2023. V. 62. P. 1. https://doi/org/10.1515/rams-2023-0150
  15. Zlotea C., Sow M.A., Ek G., Couzinie J.P., Perriere L., Guillot I., Bourgon J., Møller K.T., Jensen T.R., Akiba E. // J. Alloys. Compd. 2019. V. 775. P. 667. https://doi/org/10.1016/j.jallcom.2018.10.108
  16. Luo H., Li Z., Raabe D. // Sci Rep. 2017. V. 29. № 7 (1). P. 9892. https://doi/org/10.1038/s41598-017-10774-4
  17. Nygårda M.M., Sławinski W.A., Ekc G., Sørbya M.H. Sahlbergc M., Keend D.A., Hauback B.C. // Acta Materialia. 2020. V. 199. P. 540. https://doi/org/10.1016/j.actamat.2020.08.045
  18. Zlotea C., Sow M.A., Ek G., Couzinié J-P. et al. // J. Alloys Compd. 2019. V. 775. P. 667. https://doi/org/10.1016/j.jallcom.2018.10.108
  19. Somenkov V.A. // Ber. Bunsen. Phys. Chem. 1972. V. 76. P. 733. https://doi/org/10.1002/CHIN.197247005
  20. Соменков В.А., Шильштейн С.Ш. // Физика металлов и металловедение. 1988. Т. 65. № 1. С. 132.
  21. Соменков В.А., Шильштейн С.Ш. // Физика металлов и металловедение. 1998. Т. 86. № 3. С. 114.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Diffraction pattern of the TiZrNbMoTa sample processed by the Rietveld method: experimental (dots) and calculated profiles (solid line) (1); the difference between them (2); the dashes correspond to the Bragg positions.

Baixar (14KB)
3. Fig. 2. Diffraction pattern of a sample of the hydride phase based on TiZrNbMoTa with a hydrogen content of 0.9 atoms per lattice metal atom, processed by the Rietveld method: experimental (dots) and calculated profiles (solid line) (1); the difference between them (2). The dashes correspond to the Bragg positions: the upper row is the hydride phase with a cubic lattice, the lower row is with a tetragonal lattice.

Baixar (14KB)
4. Fig. 3. Transformation of the crystal lattice of the TiZrNbMoTa alloy from bcc (left) to tetragonal (right) during hydride formation.

Baixar (13KB)
5. Fig. 4. Diffraction pattern of a sample of the hydride phase based on TiZrNbMoTa after hydrogen desorption at a temperature of 673 K, processed by the Rietveld method: experimental (dots) and calculated profiles (solid line) (1); the difference between them (2); dashes correspond to Bragg positions.

Baixar (18KB)
6. Fig. 5. Diffraction pattern of a sample of the hydride phase based on TiZrNbMoTa after hydrogen desorption at a temperature of 773 K, processed by the Rietveld method: experimental (dots) and calculated profiles (upper line) (1); the difference between them (2); dashes correspond to Bragg positions.

Baixar (14KB)
7. Fig. 6. Diffraction pattern of a sample of the hydride phase based on TiZrNbMoTa after hydrogen desorption at a temperature of 973 K, processed by the Rietveld method. Shown are the experimental (dots) and calculated profiles (solid line) (1); the difference between them (2); the dashes correspond to the Bragg positions.

Baixar (13KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024