Influence of a Constant Magnetic Field on the Parameters of the Magnetoplastic Effect in Aluminum Alloy B95pch

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The present work is devoted to the comprehensive experimental study of the magnetoplastic effect found in the aluminum alloy B95pch aged in a weak constant magnetic field. The data on chemical composition of aluminum alloy B95pch, modes of thermal and thermomagnetic treatments and main experimentally observed regularities of changes in values of microhardness, modulus of elasticity of separate local areas and phase composition of aluminum alloy B95pch, aged at temperature 140°С, time from 2 to 8 h, in a constant magnetic field with intensity 557.0 kA/m and in its absence are presented. It was found that the constant magnetic field significantly affects the strength properties and structure of aluminum alloy B95pch. The negative magnetoplastic effect has been detected, the value of which is 21%. It is observed that the constant magnetic field does not significantly affect the average grain size, however, the size and number of observed foreign inclusions within the grain become significantly smaller compared to aging in the absence of magnetic field. In addition, the imposition of the constant magnetic field on the phase formation process leads to the formation of a more distorted structure: the half-width of diffraction lines becomes wider. The results of microhardness and modulus of elasticity measurements of aluminum alloy B95pc were found to be correlated.

全文:

受限制的访问

作者简介

J. Osinskaya

Samara National Research University

编辑信件的主要联系方式.
Email: ojv76@mail.ru
俄罗斯联邦, Samara

S. Voronin

Samara National Research University

Email: ojv76@mail.ru
俄罗斯联邦, Samara

S. Makeev

Samara National Research University

Email: ojv76@mail.ru
俄罗斯联邦, Samara

I. Levin

Samara National Research University

Email: ojv76@mail.ru
俄罗斯联邦, Samara

参考

  1. Осинская Ю.В., Покоев А.В., Пост Р., Вильде Г., Дивинский С.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 5. С. 36. https://www.doi.org/10.31857/S102809602005012X.
  2. Post R., Osinskaya J.V., Divinski S.V., Pokoev A.V., Wilde G. // Defect and Diffusion Forum. 2018. V. 383. Р. 173. https://www.doi.org/10.4028/www.scientific.net/DDF.383.173.
  3. Чуистов К.В. Старение металлических сплавов. Киев: Наукова думка, 1985. 230 c.
  4. Загуляев Д.В., Коновалов С.В., Ярополова Н.Г., Иванов Ю.Ф., Комиссарова И.А., Громов В.Е. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2015. № 5. С. 99. https://www.doi.org/10.7868/S0207352815010187
  5. Осинская Ю.В., Покоев А.В. // Вестник Тамбовского университета. 2016. Т. 21. Вып. 3. С. 1207. https://www.doi.org/10.20310/1810-0198-2016-21-3-1207-1210
  6. Осинская Ю.В., Покоев А.В., Дивинский С.В., Магамедова С.Г. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 3. С. 105. https://www.doi.org/10.31857/S1028096022030123
  7. Беляев А.И., Бочвар О.С., Буйнов Н.Н., Колобнев Н.И., Колпачев А.А., Костюков Л.А., Походаев К.С., Сенаторова О.Г., Романова Р.Р., Ткаченко Е.А., Фриндляндер И.Н. Металловедение алюминия и его сплавов. М.: Металлургия, 1983. 280 с.
  8. Зенин М.Н., Гурьев А.М., Иванов С.Г., Гурьев М.А., Черных Е.В. // Фундаментальные проблемы современного материаловедения. 2022. Т. 19. № 1. С. 106. https://www.doi.org/10.25712/ASTU.1811-1416. 2022.01.012
  9. Геллер Ю.А. Материаловедение. М.: Металлургия, 1989. 456 с.
  10. Cappella B., Dietler G. // Surf. Sci. Rep. 1999. V. 34. Iss. 1–3. P. 104. https://www.doi.org/10.1016/S0167-5729(99)00003-5
  11. Алиева С.Г., Альтман М.Б., Амбарцумян С.М. Промышленные алюминиевые сплавы: Справ. Изд. М.: Металлургия, 1984. 528 с.
  12. Альшиц В.И., Даринская Е.В., Колдаева М.В., Петржик Е.А. // Кристаллография. 2003. Т. 48. С. 838.
  13. Головин Ю.И. // Физика твердого тела. 2004. Т. 46. Вып. 5. С. 769.
  14. Молоцкий М.И. // Физика твердого тела. 1993. Т. 35. Вып. 1. С. 11.
  15. Бучаченко А.Л. // ЖЭТФ. 2007. Т. 132. Вып.4. С. 827.
  16. Молоцкий М.И. // Физика твердого тела. 1991. Т. 33. Вып. 10. С. 3112.
  17. Моргунов Р.Б. // Успехи физических наук. 2004. Т. 174. № 2. С. 131. https://www.doi.org/10.3367/UFNr.0174.200402c.0131
  18. Альшиц В.И., Даринская Е.В., Колдаева М.В., Котовский Р.К., Петржик Е.А., Трончик П. // Успехи физических наук. 2017. Т. 187. № 3. С. 327. https://www.doi.org/10.3367/UFNr.2016.07.037869
  19. Цветные металлы и сплавы, применяемые в электронной промышленности. Справочник. Научно-исследовательский институт, 1972. 125 c.
  20. Кикоин И.К. Таблицы физических величин. Справочник. М.: Атомиздат, 1976. 1008 с.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Results of metallographic study of B95pc alloy: quenched at 470°C (1 h) in 20°C water (a); aged for 2 (b, c), 4 (d, e) 6 (f, g) and 8 h (h, i) at magnetic field strengths of 0 (b, d, e, h) and 557.0 kA/m (c, d, g, i)

下载 (1MB)
3. Fig. 2. Dependence of microhardness of aluminum alloy B95pch on aging time in the absence of magnetic field (1) and at magnetic field strength of 557.0 kA/m (2)

下载 (109KB)
4. Fig. 3. Diffractograms obtained from B95pc aluminum alloy quenched at 470°C (1 h) in 20°C water (a); aged for 2 h at magnetic field strengths of 0 (b) and 557.0 kA/m (c). The indices of reflections related to the α-Al phase are marked

下载 (733KB)
5. Fig. 4. Optical image of the surface of the metallographic slip (a, b) and the results of scanning probe microscopy (c, d) of the sample of aluminum alloy B95pch aged for 2 h at magnetic field strength 0 (a, c) and 557.0 kA/m (b, d)

下载 (863KB)

版权所有 © Russian Academy of Sciences, 2024