Study of radiation resistance of optical properties of ZRO2 micropowder modified with MGO nanoparticles
- Authors: Mikhailov M.M.1, Fedosov D.S.1, Goronchko V.A.1, Lapin A.N.1, Yuryev S.A.1
 - 
							Affiliations: 
							
- Tomsk State University of Control Systems and Radioelectronics
 
 - Issue: No 3 (2025)
 - Pages: 39-44
 - Section: Articles
 - URL: https://medjrf.com/1028-0960/article/view/687666
 - DOI: https://doi.org/10.31857/S1028096025030069
 - EDN: https://elibrary.ru/ELJIIV
 - ID: 687666
 
Cite item
Abstract
The results of the study on the radiation resistance of optical properties of ZrO2 micropowder modified with MgO nanoparticles after electron irradiation (E = 30 keV, Φ = 2 × 1016 cm–2) are presented. It has been found that modification with MgO nanoparticles does not lead to the formation of new types of radiation defects; however, the number of formed radiation defects decreases with an increase in MgO content. When modified, radiation resistance increases by 1.7 times compared to unmodified samples.
Full Text
About the authors
M. M. Mikhailov
Tomsk State University of Control Systems and Radioelectronics
							Author for correspondence.
							Email: membrana2010@mail.ru
				                					                																			                												                	Russian Federation, 							Tomsk						
D. S. Fedosov
Tomsk State University of Control Systems and Radioelectronics
														Email: phedosov99@gmail.com
				                					                																			                												                	Russian Federation, 							Tomsk						
V. A. Goronchko
Tomsk State University of Control Systems and Radioelectronics
														Email: membrana2010@mail.ru
				                					                																			                												                	Russian Federation, 							Tomsk						
A. N. Lapin
Tomsk State University of Control Systems and Radioelectronics
														Email: membrana2010@mail.ru
				                					                																			                												                	Russian Federation, 							Tomsk						
S. A. Yuryev
Tomsk State University of Control Systems and Radioelectronics
														Email: membrana2010@mail.ru
				                					                																			                												                	Russian Federation, 							Tomsk						
References
- Jing P., Liu M., Wang P., Yang J., Tang M., He C., LiuM. // Chem. Eng. J. 2020. V. 388. P. 124259. https://doi.org/10.1016/j.cej.2020.124259
 - Bhamare V.S., Kulkarni R.M. // Advanced Ceramic Coatings. Elsevier, 2023. P. 157. https://doi.org/10.1016/B978-0-323-99659-4.00008-5
 - Romaniv O.M., Zalite I.V., Simin’kovych V.M., Tkach O.N., Vasyliv B.D. // Mater. Sci. 1996. V. 31. № 5. P. 588. https://doi.org/10.1007/BF00558793
 - Atkinson I., Mocioiu O.C., Anghel E.M. // Boletín de la Sociedad Española de Cerámica y Vidrio. 2022. V. 61. № 6. P. 677. https://doi.org/10.1016/j.bsecv.2021.07.002
 - Song X., Ding Y., Zhang J., Jiang C., Liu Z., Lin C., Zeng Y. // J. Mater. Res. Technol. 2023. V. 23. P. 648. https://doi.org/10.1016/j.jmrt.2023.01.040
 - Lee S., Zhang W., Khatkhatay F., Wang H., Jia Q., MacManus-Driscoll J.L. // Nano Lett. 2015. V. 15. № 11. P. 7362. https://doi.org/10.1021/acs.nanolett.5b02726
 - Xu H.M., Jing M.X., Li J., Huang Z.H., Wang T.F., Yuan W.Y., Shen X.Q. // ACS Sustain. Chem. Eng. 2021. V. 9. № 33. P. 11118. https://doi.org/10.1021/acssuschemeng.1c02886
 - Михайлов М.М., Юрьев С.А., Лапин А.Н., Горончко В.А., Утебеков Т.А. // Изв. вузов. Физика. 2023. Т. 66. № 6. С. 2023. https://doi.org/10.17223/00213411/66/6/15
 - Mikhailov M.M., Neshchimenko V.V., Li C. // Dyes and Pigments. 2016. V. 131. P. 256. https://doi.org/10.1016/j.dyepig.2016.04.012
 - Li C., Neshchimenko V.V., Mikhailov M.M. // Int. J. Chem., Nucl., Metall. Mater. Eng. 2014. V. 8. P. 342. https://doi.org/10.1016/j.nimb.2014.04.014
 - Kositsyn L.G., Duoretskii M.I., Kuznetsov N.Y., Mikhailov M.M. // Instrum. Experim. Tech. 1985. V. 28. № 4. P. 929.
 - ASTM E490-00a Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables. 2019.
 - ASTM E903-96 Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres. 2005.
 - Lee T., Selloni A. // J. Phys. Chem. C. 2023. V. 127. № 28. P. 13936. https://doi.org/10.1021/acs.jpcc.3c02833
 - Feng S., Zhao J., Liang X., Li H., Wang C. // Mol. Catal. 2023. V. 544. P. 113205. https://doi.org/10.1016/j.mcat.2023.113205
 - Mikhailov M.M., Dvoretskii M.I. // Soviet Phys. J. 1988. V. 31. P. 591.
 - Kuznetsov V.N., Serpone N. // J. Phys. Chem. 2009. V. 113. P. 15110. https://doi.org/10.1021/jp901034t
 - Zheng J.X., Ceder G., Maxisch T., Chim W.K., Choi W.K. // Phys. Rev. B. 2007. V. 75. P. 104112. https://doi.org/10.1103/PhysRevB.75.104112
 - Полежаев Ю.М., Кортов В.С., Мишкевич М.В. // Изв. АН СССР. Неорган. материалы. 1975. T. 11. № 3. C. 486.
 - Михайлов М.М., Дворецкий М.И., Кузнецов Н.Я. // Изв. АН СССР. Неорган. материалы. 1984. T. 20. № 3. C. 449.
 - Foster A.S., Sulimov V.B., Gejo Lopez F. // Phys. Rev. B. 2001. V. 64. P. 224108. https://doi.org/10.1103/PhysRevB.64.224108
 
Supplementary files
				
			
					
						
						
						
						
									






