Extract of Gualou-Xiebai Herb Pair Improves Lipid Metabolism Disorders by Enhancing the Reverse Cholesterol Transport in Atherosclerosis Mice


Cite item

Full Text

Abstract

Background:Gualou is derived from the fruit of Trichosanthes kirilowii Maxim, while Xiebai from the bulbs of Allium macrostemon Bunge. Gualou and Xiebai herb pair (2:1) is widely used in clinical practice to treat atherosclerotic cardiovascular diseases. However, the mechanism underlying its potential activity on atherosclerosis (AS) has not been fully elucidated.

Methods:The extract of Gualou-Xiebai herb pair (GXE) was prepared from Gualou (80 g) and Xiebai (40 g) by continuous refluxing with 50% ethanol for 2 h at 80°C. In vivo, ApoE-/- mice were fed a high-fat diet (HFD) for 10 weeks to induce an AS model, and then the mice were treated with GXE (3, 6, 12 g/kg) or atorvastatin (10 mg/kg) via oral gavage. Besides, RAW264.7 macrophages were stimulated by ox-LDL to establish a foam cell model in vitro.

Results:GXE suppressed plaque formation, regulated plasma lipids, and promoted liver lipid clearance in AS mice. In addition, 0.5, 1, and 2 mg/mL GXE significantly reduced the TC and FC levels in ox-LDL (50 µg/mL)-stimulated foam cells. GXE increased cholesterol efflux from the foam cells to ApoA-1 and HDL, and enhanced the protein expressions of ABCA1, ABCG1, and SR-BI, which were reversed by the PPARγ inhibitor. Meanwhile, GXE increased the LCAT levels, decreased the lipid levels and increased the TBA levels in the liver of AS mice. Molecular docking indicated that some compounds in GXE showed favorable binding energy with PPARγ, LCAT and CYP7A1 proteins, especially apigenin-7-O-β-D-glucoside and quercetin.

Conclusion:In summary, our results suggested that GXE improved lipid metabolism disorders by enhancing RCT, providing a scientific basis for the clinical use of GXE in AS treatment.

About the authors

Yarong Liu

School of Pharmacy, Anhui University of Chinese Medicine

Email: info@benthamscience.net

Tian Wang

School of Pharmacy, Anhui University of Chinese Medicine

Email: info@benthamscience.net

Lidan Ding

School of Pharmacy, Anhui University of Chinese Medicine

Email: info@benthamscience.net

Zhenglong Li

School of Pharmacy, Anhui University of Chinese Medicine

Email: info@benthamscience.net

Yexiang Zhang

, The First Affiliated Hospital of Anhui University of Chinese Medicine

Email: info@benthamscience.net

Min Dai

School of Pharmacy, Anhui University of Chinese Medicine

Email: info@benthamscience.net

Hongfei Wu

School of Pharmacy, Anhui University of Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

References

  1. Perrotta I. Atherosclerosis: From molecular biology to therapeutic perspective 3.0. Int J Mol Sci 2023; 24(8): 6897. doi: 10.3390/ijms24086897 PMID: 37108058
  2. Kolaszyńska O, Lorkowski J. Symmetry and asymmetry in atherosclerosis. Int J Occup Med Environ Health 2023; 36(6): 693-703. doi: 10.13075/ijomeh.1896.02171 PMID: 37791506
  3. Libby P, Buring JE, Badimon L, et al. Atherosclerosis. Nat Rev Dis Primers 2019; 5(1): 56. doi: 10.1038/s41572-019-0106-z PMID: 31420554
  4. Arvanitis M, Lowenstein CJ. Dyslipidemia. Ann Intern Med 2023; 176(6): ITC81-96. doi: 10.7326/AITC202306200 PMID: 37307585
  5. Delialis D, Georgiopoulos G, Aivalioti E, et al. Remnant cholesterol and atherosclerotic disease in high cardiovascular risk patients. Beyond LDL cholesterol and hypolipidemic treatment. Hellenic J Cardiol 2022; 66: 26-31. doi: 10.1016/j.hjc.2022.05.011 PMID: 35667617
  6. Wadström BN, Pedersen KM, Wulff AB, Nordestgaard BG. Elevated remnant cholesterol, plasma triglycerides, and cardiovascular and non-cardiovascular mortality. Eur Heart J 2023; 44(16): 1432-45. doi: 10.1093/eurheartj/ehac822 PMID: 36631967
  7. Gasbarrino K, Hafiane A, Gianopoulos I, Zheng H, Mantzoros CS, Daskalopoulou SS. Relationship between circulating adipokines and cholesterol efflux in subjects with severe carotid atherosclerosis. Metabolism 2023; 140: 155381. doi: 10.1016/j.metabol.2022.155381 PMID: 36566801
  8. Rohatgi A. Reverse cholesterol transport and atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 39(1): 2-4. doi: 10.1161/ATVBAHA.118.311978 PMID: 30586333
  9. Xie J, Peng L. wang T, et al. QiShenYiQi pill inhibits atherosclerosis by promoting reverse cholesterol transport PPARγ-LXRα/β-ABCA1 pathway. J Ethnopharmacol 2023; 315: 116684. doi: 10.1016/j.jep.2023.116684
  10. Pownall HJ, Rosales C, Gillard BK, Gotto AM Jr. High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nat Rev Cardiol 2021; 18(10): 712-23. doi: 10.1038/s41569-021-00538-z PMID: 33833449
  11. Peng Y, Xu J, Zeng Y, Chen L, Xu XL. Polydatin attenuates atherosclerosis in apolipoprotein E-deficient mice: Role of reverse cholesterol transport. Phytomedicine 2019; 62: 152935. doi: 10.1016/j.phymed.2019.152935 PMID: 31085374
  12. Flores R, Jin X, Chang J, et al. LCAT, ApoD, and ApoA1 expression and review of cholesterol deposition in the cornea. Biomolecules 2019; 9(12): 785. doi: 10.3390/biom9120785 PMID: 31779197
  13. Liu Y, Zhong H, Xu P, et al. Deciphering the combination mechanisms of Gualou–Xiebai herb pair against atherosclerosis by network pharmacology and HPLC-Q-TOF-MS technology. Front Pharmacol 2022; 13: 941400. doi: 10.3389/fphar.2022.941400 PMID: 36120369
  14. Zhang WY, Yu Y, Yan LL, et al. Discovery of cardio-protective constituents of gualou xiebai decoction, a classical traditional Chinese medicinal formula. Phytomedicine 2019; 54: 318-27. doi: 10.1016/j.phymed.2018.04.047 PMID: 30060904
  15. Wu R, Liu X, Wang J, Zhou XZ. Study on law using Chinese drug of famous old docter of traditional Chinese medicine to coronary heart disease based on association rules. Zhongguo Zhongyao Zazhi 2007; 32(17): 1786-8. PMID: 17993003
  16. Lu X, Xu H, Zhao T, Li G. Study of serum metabonomics and formula-pattern correspondence in coronary heart disease patients diagnosed as phlegm or blood stasis pattern based on ultra performance liquid chromatography mass spectrometry. Chin J Integr Med 2018; 24(12): 905-11. doi: 10.1007/s11655-018-2564-7 PMID: 29948595
  17. Ding L, Xu P, Bao Y, Huang J, Wu H. Effects of trichosanthis fructus-allii macrostemonis bulbus on the activation of NLRP3 inflammasomes in ApoE-/- mice at different stages of atherosclerosis. Chinese Journal of Atherosclerosis 2022; 30(1): 9.
  18. Luo M, Fan R, Wang X, et al. Gualou xiebai banxia decoction ameliorates poloxamer 407-induced hyperlipidemia. Biosci Rep 2021; 41(6): BSR20204216. doi: 10.1042/BSR20204216 PMID: 34036306
  19. Yan LL, Zhang WY, Wei XH, et al. Gualou xiebai decoction, a traditional chinese medicine, prevents cardiac reperfusion injury of hyperlipidemia rat via energy modulation. Front Physiol 2018; 9: 296. doi: 10.3389/fphys.2018.00296 PMID: 29674972
  20. Xu PB, Ding LD, Qiu JW, et al. Study on effect of "Trichosanthis Fructus-Allii Macrostemonis Bulbus" on atherosclerosis in ApoE~(-/-) mice based on liver metabonomics. Zhongguo Zhongyao Zazhi 2021; 46(20): 5320-9. PMID: 34738436
  21. Zhang K, Song W, Li D, Jin X. Apigenin in the regulation of cholesterol metabolism and protection of blood vessels. Exp Ther Med 2017; 13(5): 1719-24. doi: 10.3892/etm.2017.4165 PMID: 28565758
  22. Chen X, Zou D, Chen X, Wu H, Xu D. Hesperetin inhibits foam cell formation and promotes cholesterol efflux in THP-1-derived macrophages by activating LXRα signal in an AMPK-dependent manner. J Physiol Biochem 2021; 77(3): 405-17. doi: 10.1007/s13105-020-00783-9 PMID: 34212313
  23. Jia Q, Cao H, Shen D, et al. Quercetin protects against atherosclerosis by regulating the expression of PCSK9, CD36, PPARγ, LXRα and ABCA1. Int J Mol Med 2019; 44(3): 893-902. doi: 10.3892/ijmm.2019.4263 PMID: 31524223
  24. Li B, Ji Y, Yi C, et al. Rutin inhibits Ox-LDL-mediated macrophage inflammation and foam cell formation by inducing autophagy and modulating PI3K/ATK signaling. Molecules 2022; 27(13): 4201. doi: 10.3390/molecules27134201 PMID: 35807447
  25. Zhong H, Qiu J, Wu H, Xu H, Zhang P, Xue C, et al. Mechanism of action of trichosanthis fructus-allii macrostemonis bulbus herb pairs against hyperlipidemia based on network pharmacology. Zhongguo Shiyan Fangjixue Zazhi 2020; 26(18): 164-5.
  26. Ding Y, Peng Y, Shen H, Shu L, Wei Y. Gualou Xiebai decoction inhibits cardiac dysfunction and inflammation in cardiac fibrosis rats. BMC Complement Altern Med 2015; 16(1): 49. doi: 10.1186/s12906-016-1012-5 PMID: 26846090
  27. Song W, Wang W, Wang Y, Dou L, Chen L, Yan X. Characterization of fluorescent NBD-cholesterol efflux in THP-1-derived macrophages. Mol Med Rep 2015; 12(4): 5989-96. doi: 10.3892/mmr.2015.4154 PMID: 26239480
  28. Li Y, Zhang L, Ren P, et al. Qing-Xue-Xiao-Zhi formula attenuates atherosclerosis by inhibiting macrophage lipid accumulation and inflammatory response via TLR4/MyD88/NF-κB pathway regulation. Phytomedicine 2021; 93: 153812. doi: 10.1016/j.phymed.2021.153812 PMID: 34753029
  29. Raposeiras-Roubin S, Rosselló X, Oliva B, et al. Triglycerides and residual atherosclerotic risk. J Am Coll Cardiol 2021; 77(24): 3031-41. doi: 10.1016/j.jacc.2021.04.059 PMID: 34140107
  30. Li J, Meng Q, Fu Y, et al. Novel insights: Dynamic foam cells derived from the macrophage in atherosclerosis. J Cell Physiol 2021; 236(9): 6154-67. doi: 10.1002/jcp.30300 PMID: 33507545
  31. Ouimet M, Barrett TJ, Fisher EA. HDL and reverse cholesterol transport. Circ Res 2019; 124(10): 1505-18. doi: 10.1161/CIRCRESAHA.119.312617 PMID: 31071007
  32. Xue H, Chen X, Yu C, et al. Gut microbially produced indole-3-propionic acid inhibits atherosclerosis by promoting reverse cholesterol transport and its deficiency is causally related to atherosclerotic cardiovascular disease. Circ Res 2022; 131(5): 404-20. doi: 10.1161/CIRCRESAHA.122.321253 PMID: 35893593
  33. Li Y, Luo X, Hua Z, et al. Apolipoproteins as potential communicators play an essential role in the pathogenesis and treatment of early atherosclerosis. Int J Biol Sci 2023; 19(14): 4493-510. doi: 10.7150/ijbs.86475 PMID: 37781031
  34. Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 2019; 73: 65-91. doi: 10.1016/j.plipres.2018.12.002 PMID: 30528667
  35. Steck TL, Lange Y. Is reverse cholesterol transport regulated by active cholesterol? J Lipid Res 2023; 64(6): 100385. doi: 10.1016/j.jlr.2023.100385 PMID: 37169287
  36. Chistiakov DA, Bobryshev YV, Orekhov AN. Macrophage‐mediated cholesterol handling in atherosclerosis. J Cell Mol Med 2016; 20(1): 17-28. doi: 10.1111/jcmm.12689 PMID: 26493158
  37. Chen Z, Ying X, Meng S, et al. High-performance liquid chromatographic determination and pharmacokinetic study of apigenin-7-O-β-D-glucoside in rat plasma after intravenous administration. Arch Pharm Res 2011; 34(5): 741-6. doi: 10.1007/s12272-011-0507-3 PMID: 21656359
  38. Ulusoy HG, Sanlier N. A minireview of quercetin: From its metabolism to possible mechanisms of its biological activities. Crit Rev Food Sci Nutr 2020; 60(19): 3290-303. doi: 10.1080/10408398.2019.1683810 PMID: 31680558
  39. Chen IL, Tsai YJ, Huang CM, Tsai TH. Lymphatic absorption of quercetin and rutin in rat and their pharmacokinetics in systemic plasma. J Agric Food Chem 2010; 58(1): 546-51. doi: 10.1021/jf9026124 PMID: 19916501
  40. Zheng S, Huang H, Li Y, et al. Yin-xing-tong-mai decoction attenuates atherosclerosis via activating PPARγ-LXRα-ABCA1/ABCG1 pathway. Pharmacol Res 2021; 169: 105639. doi: 10.1016/j.phrs.2021.105639 PMID: 33932607
  41. Wang B, Tontonoz P. Liver X receptors in lipid signalling and membrane homeostasis. Nat Rev Endocrinol 2018; 14(8): 452-63. doi: 10.1038/s41574-018-0037-x PMID: 29904174
  42. Gao Q, Wei A, Chen F, et al. Enhancing PPARγ by HDAC inhibition reduces foam cell formation and atherosclerosis in ApoE deficient mice. Pharmacol Res 2020; 160: 105059. doi: 10.1016/j.phrs.2020.105059 PMID: 32621955
  43. Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol 2021; 18(12): 809-23. doi: 10.1038/s41569-021-00569-6 PMID: 34127848
  44. Wang H, Yang Y, Sun X, et al. Sonodynamic therapy-induced foam cells apoptosis activates the phagocytic PPARγ-LXRα-ABCA1/ABCG1 pathway and promotes cholesterol efflux in advanced plaque. Theranostics 2018; 8(18): 4969-84. doi: 10.7150/thno.26193 PMID: 30429880
  45. Thacker SG, Rousset X, Esmail S, et al. Increased plasma cholesterol esterification by LCAT reduces diet-induced atherosclerosis in SR-BI knockout mice. J Lipid Res 2015; 56(7): 1282-95. doi: 10.1194/jlr.M048629 PMID: 25964513
  46. Guo M, Liu Z, Xu Y, et al. Spontaneous atherosclerosis in aged LCAT-deficient hamsters with enhanced oxidative stress—brief report. Arterioscler Thromb Vasc Biol 2020; 40(12): 2829-36. doi: 10.1161/ATVBAHA.120.315265 PMID: 32998519
  47. Getz G, Reardon C. Apoprotein E and reverse cholesterol transport. Int J Mol Sci 2018; 19(11): 3479. doi: 10.3390/ijms19113479 PMID: 30404132
  48. Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res 2020; 116(7): 1254-74. doi: 10.1093/cvr/cvz338 PMID: 31834409
  49. Ge M, Shao R, He H. Advances in understanding the regulatory mechanism of cholesterol 7α-hydroxylase. Biochem Pharmacol 2019; 164: 152-64. doi: 10.1016/j.bcp.2019.04.008 PMID: 30978324
  50. Liu L, Zhao Y, Ming J, et al. Polyphenol extract and essential oil of Amomum tsao-ko equally alleviate hypercholesterolemia and modulate gut microbiota. Food Funct 2021; 12(23): 12008-21. doi: 10.1039/D1FO03082E PMID: 34755750
  51. Ren K, Jiang T, Zhou HF, Liang Y, Zhao GJ. Apigenin retards atherogenesis by promoting ABCA1-mediated cholesterol efflux and suppressing inflammation. Cell Physiol Biochem 2018; 47(5): 2170-84. doi: 10.1159/000491528 PMID: 29975943
  52. Ballerini P, Ciccarelli R, Di Iorio P, et al. Guanosine effect on cholesterol efflux and apolipoprotein E expression in astrocytes. Purinergic Signal 2006; 2(4): 637-49. doi: 10.1007/s11302-006-9011-5 PMID: 18404467
  53. Leiva A, Guzmán-Gutiérrez E, Contreras-Duarte S, et al. Adenosine receptors: Modulators of lipid availability that are controlled by lipid levels. Mol Aspects Med 2017; 55: 26-44. doi: 10.1016/j.mam.2017.01.007 PMID: 28153452
  54. Li Y, Qin R, Yan H, et al. Inhibition of vascular smooth muscle cells premature senescence with rutin attenuates and stabilizes diabetic atherosclerosis. J Nutr Biochem 2018; 51: 91-8. doi: 10.1016/j.jnutbio.2017.09.012 PMID: 29107826
  55. Xie W, Zhang Y, Wang N, et al. Novel effects of macrostemonoside A, a compound from Allium macrostemon Bung, on hyperglycemia, hyperlipidemia, and visceral obesity in high-fat diet-fed C57BL/6 mice. Eur J Pharmacol 2008; 599(1-3): 159-65. doi: 10.1016/j.ejphar.2008.09.042 PMID: 18930725

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers