Phosphate Homeostasis and Disorders of Phosphate Metabolism


Цитировать

Полный текст

Аннотация

Phosphate is indispensable for human life and evolutionary changes over several millions of years have established tightly regulated mechanisms to ensure phosphate homeostasis. In this process, calcium and phosphate metabolism have come to be intricately linked together. Three hor-mones (PTH, FGF23 and Calcitriol) maintain the fine balance of calcium and phosphate metabo-lism through their actions at three sites (the gut, the kidneys and the skeleton). Disorders that disrupt this balance can have serious clinical consequences. Acute changes in serum phosphate levels can result in life threatening complications like respiratory failure and cardiac arrythmias. Chronic hy-pophosphataemia predominantly affects the musculoskeletal system and presents as impaired linear growth, rickets, osteomalacia and dental problems. Hyperphosphataemia is very common in the set-ting of chronic kidney disease and can be difficult to manage. A thorough understanding of calcium and phosphate homeostasis is essential to diagnose and treat conditions associated with hypo and hyperphosphataemia. In this review, we will discuss the calcium and phosphate metabolism, aetiol-ogies and management of hypo and hyperphosphataemia.

Об авторах

Nandhini Perumal

Department of Endocrinology, Royal Manchester Children’s Hospital

Email: info@benthamscience.net

Raja Padidela

Department of Endocrinology, Royal Manchester Children’s Hospital

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Peacock M. Phosphate metabolism in health and disease. Calcif Tissue Int 2021; 108(1): 3-15. doi: 10.1007/s00223-020-00686-3 PMID: 32266417
  2. Doherty AH, Ghalambor CK, Donahue SW. Evolutionary physiology of bone: Bone metabolism in changing environments. Physiology 2015; 30(1): 17-29. doi: 10.1152/physiol.00022.2014 PMID: 25559152
  3. Wagner DO, Aspenberg P. Where did bone come from? Acta Orthop 2011; 82(4): 393-8. doi: 10.3109/17453674.2011.588861 PMID: 21657973
  4. Wodzinski RJ, Ullah AHJ. Phytase. In: Advances in Applied Microbiology. Elsevier 1996; Vol. 42: pp. 263-302.
  5. Calvo MS, Uribarri J. Contributions to total phosphorus intake: All sources considered. Semin Dial 2013; 26(1): 54-61. doi: 10.1111/sdi.12042 PMID: 23278245
  6. Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J. Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci USA 1998; 95(24): 14564-9. doi: 10.1073/pnas.95.24.14564 PMID: 9826740
  7. Tanaka Y, Deluca HF. Role of 1,25-dihydroxyvitamin D3 in maintaining serum phosphorus and curing rickets. Proc Natl Acad Sci USA 1974; 71(4): 1040-4. doi: 10.1073/pnas.71.4.1040 PMID: 4524612
  8. Condamine L, Menaa C, Vrtovsnik F, Friedlander G, Garabédian M. Local action of phosphate depletion and insulin-like growth factor 1 on in vitro production of 1,25-dihydroxyvitamin D by cultured mammalian kidney cells. J Clin Invest 1994; 94(4): 1673-9. doi: 10.1172/JCI117512 PMID: 7929846
  9. Wu S, Finch J, Zhong M, Slatopolsky E, Grieff M, Brown AJ. Expression of the renal 25-hydroxyvitamin D-24-hydroxylase gene: Regulation by dietary phosphate. Am J Physiol 1996; 271(1 Pt 2): F203-8. PMID: 8760262
  10. Segawa H, Kaneko I, Yamanaka S, et al. Intestinal Na-P i cotransporter adaptation to dietary Pi content in vitamin D receptor null mice. Am J Physiol Renal Physiol 2004; 287(1): F39-47. doi: 10.1152/ajprenal.00375.2003 PMID: 14996670
  11. Imel EA, Econs MJ. Approach to the hypophosphatemic patient. J Clin Endocrinol Metab 2012; 97(3): 696-706. doi: 10.1210/jc.2011-1319 PMID: 22392950
  12. Dasgupta I, Shroff R, Bennett-Jones D, McVeigh G. Management of hyperphosphataemia in chronic kidney disease: Summary of National Institute for Health and Clinical Excellence (NICE) guideline. Nephron Clin Pract 2013; 124(1-2): 1-9. doi: 10.1159/000354711 PMID: 24022619
  13. Tenenhouse HS. Cellular and molecular mechanisms of renal phosphate transport. J Bone Miner Res 1997; 12(2): 159-64. doi: 10.1359/jbmr.1997.12.2.159 PMID: 9041046
  14. Bergwitz C, Roslin NM, Tieder M, et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet 2006; 78(2): 179-92. doi: 10.1086/499409 PMID: 16358214
  15. Blaine J, Chonchol M, Levi M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol 2015; 10(7): 1257-72. doi: 10.2215/CJN.09750913 PMID: 25287933
  16. Pfister MF, Ruf I, Stange G, et al. Parathyroid hormone leads to the lysosomal degradation of the renal type II Na/Pi cotransporter. Proc Natl Acad Sci USA 1998; 95(4): 1909-14. doi: 10.1073/pnas.95.4.1909 PMID: 9465116
  17. Gattineni J, Bates C, Twombley K, et al. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol 2009; 297(2): F282-91. doi: 10.1152/ajprenal.90742.2008 PMID: 19515808
  18. Weinman EJ, Biswas R, Steplock D, Douglass TS, Cunningham R, Shenolikar S. Sodium-hydrogen exchanger regulatory factor 1 (NHERF-1) transduces signals that mediate dopamine inhibition of sodium-phosphate co-transport in mouse kidney. J Biol Chem 2010; 285(18): 13454-60. doi: 10.1074/jbc.M109.094359 PMID: 20200151
  19. Levi M, Shayman JA, Abe A, et al. Dexamethasone modulates rat renal brush border membrane phosphate transporter mRNA and protein abundance and glycosphingolipid composition. J Clin Invest 1995; 96(1): 207-16. doi: 10.1172/JCI118022 PMID: 7615789
  20. Nowik M, Picard N, Stange G, et al. Renal phosphaturia during metabolic acidosis revisited: Molecular mechanisms for decreased renal phosphate reabsorption. Pflugers Arch 2008; 457(2): 539-49. doi: 10.1007/s00424-008-0530-5 PMID: 18535837
  21. Biber J, Hernando N, Forster I, Murer H. Regulation of phosphate transport in proximal tubules. Pflugers Arch 2009; 458(1): 39-52. doi: 10.1007/s00424-008-0580-8 PMID: 18758808
  22. Fukumoto S. Phosphate metabolism and vitamin D. Bonekey Rep 2014; 3: 497. doi: 10.1038/bonekey.2013.231 PMID: 24605214
  23. Peacock M. Calcium metabolism in health and disease. Clin J Am Soc Nephrol 2010; 5 (Suppl. 1): S23-30. doi: 10.2215/CJN.05910809 PMID: 20089499
  24. Sabbagh Y, Carpenter TO, Demay MB. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci USA 2005; 102(27): 9637-42. doi: 10.1073/pnas.0502249102 PMID: 15976027
  25. Penido MGMG, Alon US. Phosphate homeostasis and its role in bone health. Pediatr Nephrol 2012; 27(11): 2039-48. doi: 10.1007/s00467-012-2175-z PMID: 22552885
  26. Witteveen JE, van Thiel S, Romijn JA, Hamdy N A T. Therapy of endocrine disease: Hungry bone syndrome: still a challenge in the post-operative management of primary hyperparathyroidism: A systematic review of the literature. Eur J Endocrinol 2013; 168(3): R45-53. doi: 10.1530/EJE-12-0528 PMID: 23152439
  27. Arnold A, Dennison E, Kovacs CS, et al. Hormonal regulation of biomineralization. Nat Rev Endocrinol 2021; 17(5): 261-75. doi: 10.1038/s41574-021-00477-2 PMID: 33727709
  28. Yoshiko Y, Wang H, Minamizaki T, et al. Mineralized tissue cells are a principal source of FGF23. Bone 2007; 40(6): 1565-73. doi: 10.1016/j.bone.2007.01.017 PMID: 17350357
  29. Edmonston D, Wolf M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat Rev Nephrol 2020; 16(1): 7-19. doi: 10.1038/s41581-019-0189-5 PMID: 31519999
  30. Quarles LD. Endocrine functions of bone in mineral metabolism regulation. J Clin Invest 2008; 118(12): 3820-8. doi: 10.1172/JCI36479 PMID: 19033649
  31. Benet-Pagès A, Lorenz-Depiereux B, Zischka H, White KE, Econs MJ, Strom TM. FGF23 is processed by proprotein convertases but not by PHEX. Bone 2004; 35(2): 455-62. doi: 10.1016/j.bone.2004.04.002 PMID: 15268897
  32. Tagliabracci VS, Engel JL, Wiley SE, et al. Dynamic regulation of FGF23 by Fam 20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc Natl Acad Sci USA 2014; 111(15): 5520-5. doi: 10.1073/pnas.1402218111 PMID: 24706917
  33. Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006; 444(7120): 770-4. doi: 10.1038/nature05315 PMID: 17086194
  34. Bai X, Miao D, Xiao S, et al. CYP24 inhibition as a therapeutic target in FGF23-mediated renal phosphate wasting disorders. J Clin Invest 2016; 126(2): 667-80. doi: 10.1172/JCI81928 PMID: 26784541
  35. Saito H, Kusano K, Kinosaki M, et al. Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1α,25-dihydroxyvitamin D3 production. J Biol Chem 2003; 278(4): 2206-11. doi: 10.1074/jbc.M207872200 PMID: 12419819
  36. Liu C, Li X, Zhao Z, et al. Iron deficiency plays essential roles in the trigger, treatment, and prognosis of autosomal dominant hypophosphatemic rickets. Osteoporos Int 2021; 32(4): 737-45. doi: 10.1007/s00198-020-05649-w PMID: 32995940
  37. Boateng AA, Sriram K, Meguid MM, Crook M. Refeeding syndrome: Treatment considerations based on collective analysis of literature case reports. Nutrition 2010; 26(2): 156-67. doi: 10.1016/j.nut.2009.11.017 PMID: 20122539
  38. da Silva JSV, Seres DS, Sabino K, et al. ASPEN consensus recommendations for refeeding syndrome. Nutr Clin Pract 2020; 35(2): 178-95. doi: 10.1002/ncp.10474 PMID: 32115791
  39. Kovacs CS. Bone development and mineral homeostasis in the fetus and neonate: Roles of the calciotropic and phosphotropic hormones. Physiol Rev 2014; 94(4): 1143-218. doi: 10.1152/physrev.00014.2014 PMID: 25287862
  40. Rustico SE, Calabria AC, Garber SJ. Metabolic bone disease of prematurity. J Clin Transl Endocrinol 2014; 1(3): 85-91. doi: 10.1016/j.jcte.2014.06.004 PMID: 29159088
  41. Adamkin DH, Radmacher PG. Current trends and future challenges in neonatal parenteral nutrition. J Neonatal Perinatal Med 2014; 7(3): 157-64. doi: 10.3233/NPM-14814008 PMID: 25318631
  42. Chinoy A, Mughal MZ, Padidela R. Metabolic bone disease of prematurity: Causes, recognition, prevention, treatment and long-term con-sequences. Arch Dis Child Fetal Neonatal Ed 2019; 104(5): F560-6. doi: 10.1136/archdischild-2018-316330 PMID: 31079069
  43. El Shazly AN, Soliman DR, Assar EH, Behiry EG, Gad Ahmed IAEN. Phosphate disturbance in critically ill children: Incidence, associated risk factors and clinical outcomes. Ann Med Surg 2017; 21(21): 118-23. doi: 10.1016/j.amsu.2017.07.079 PMID: 28861270
  44. Schiffl H, Lang SM. Severe acute hypophosphatemia during renal replacement therapy adversely affects outcome of critically ill patients with acute kidney injury. Int Urol Nephrol 2013; 45(1): 191-7. doi: 10.1007/s11255-011-0112-x PMID: 22227698
  45. Levine BS, Ho K, Kraut JA, Coburn JW, Kurokawa K. Effect of metabolic acidosis on phosphate transport by the renal brush-border membrane. Biochim Biophys Acta 1983; 727(1): 7-12.
  46. van der Vaart A, Waanders F, van Beek AP, Vriesendorp TM, Wolffenbuttel BHR, van Dijk PR. Incidence and determinants of hypophos-phatemia in diabetic ketoacidosis: An observational study. BMJ Open Diabetes Res Care 2021; 9(1)e002018 doi: 10.1136/bmjdrc-2020-002018 PMID: 33597187
  47. Miszczuk K, Mroczek-Wacinska J, Piekarski R. Wysocka-Lukasik B, Jawniak R, Ben-Skowronek I. Ventricular bigeminy and trigeminy caused by hypophosphataemia during diabetic ketoacidosis treatment: A case report. Ital J Pediatr 2019; 45(1): 42. doi: 10.1186/s13052-019-0633-y PMID: 30940174
  48. Choi HS, Kwon A, Chae HW, Suh J, Kim DH, Kim HS. Respiratory failure in a diabetic ketoacidosis patient with severe hypophosphatemia. Ann Pediatr Endocrinol Metab 2018; 23(2): 103-6. doi: 10.6065/apem.2018.23.2.103 PMID: 29969883
  49. Finn BP, Fraser B, O’Connell SM. Supraventricular tachycardia as a complication of severe diabetic ketoacidosis in an adolescent with new-onset type 1 diabetes. BMJ Case Rep 2018; 2018bcr-2017-222861 doi: 10.1136/bcr-2017-222861 PMID: 29545427
  50. Stokes VJ, Nielsen MF, Hannan FM, Thakker RV. Hypercalcemic disorders in children. J Bone Miner Res 2017; 32(11): 2157-70. doi: 10.1002/jbmr.3296 PMID: 28914984
  51. Suva LJ, Winslow GA, Wettenhall RH, et al. A parathyroid hormone-related protein implicated in malignant hypercalcemia: Cloning and expression. Science 1987; 237(4817): 893-6. doi: 10.1126/science.3616618 PMID: 3616618
  52. Shimonodan H, Nagayama J, Nagatoshi Y, et al. Acute lymphocytic leukemia in adolescence with multiple osteolytic lesions and hyper-calcemia mediated by lymphoblast-producing parathyroid hormone-related peptide: A case report and review of the literature. Pediatr Blood Cancer 2005; 45(3): 333-9. doi: 10.1002/pbc.20357 PMID: 15700250
  53. Hosseini B, Leibl M, Stoffman J, Morris A. Two cases of hypercalcemia in pediatric ovarian dysgerminoma. J Obstet Gynaecol Can 2019; 41(5): 660-5. doi: 10.1016/j.jogc.2018.05.004 PMID: 30551952
  54. Srivastava T, Kats A, Martin TJ, Pompolo S, Alon US. Parathyroid-hormone-related protein-mediated hypercalcemia in benign congenital mesoblastic nephroma. Pediatr Nephrol 2011; 26(5): 799-803. doi: 10.1007/s00467-010-1728-2 PMID: 21161280
  55. Schipani E, Langman CB, Parfitt AM, et al. Constitutively activated receptors for parathyroid hormone and parathyroid hormone-related peptide in Jansen’s metaphyseal chondrodysplasia. N Engl J Med 1996; 335(10): 708-14. doi: 10.1056/NEJM199609053351004 PMID: 8703170
  56. Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL. A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res 2011; 26(7): 1381-8. doi: 10.1002/jbmr.340 PMID: 21538511
  57. Murali SK, Andrukhova O, Clinkenbeard EL, White KE, Erben RG. Excessive osteocytic Fgf23 secretion contributes to pyrophosphate accumulation and mineralization defect in Hyp mice. PLoS Biol 2016; 14(4)e1002427 doi: 10.1371/journal.pbio.1002427 PMID: 27035636
  58. White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int 2001; 60(6): 2079-86. doi: 10.1046/j.1523-1755.2001.00064.x PMID: 11737582
  59. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet 2006; 78(2): 193-201. doi: 10.1086/499410 PMID: 16358215
  60. Levy-Litan V, Hershkovitz E, Avizov L, et al. Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet 2010; 86(2): 273-8. doi: 10.1016/j.ajhg.2010.01.010 PMID: 20137772
  61. Rafaelsen SH, Raeder H, Fagerheim AK, et al. Exome sequencing reveals FAM20c mutations associated with fibroblast growth factor 23-related hypophosphatemia, dental anomalies, and ectopic calcification. J Bone Miner Res 2013; 28(6): 1378-85. doi: 10.1002/jbmr.1850 PMID: 23325605
  62. de Castro LF, Ovejero D, Boyce AM. Diagnosis of endocrine disease: Mosaic disorders of FGF23 excess: Fibrous dysplasia/McCune–Albright syndrome and cutaneous skeletal hypophosphatemia syndrome. Eur J Endocrinol 2020; 182(5): R83-99. doi: 10.1530/EJE-19-0969 PMID: 32069220
  63. Lumbroso S, Paris F, Sultan C. Activating Gsalpha mutations: Analysis of 113 patients with signs of McCune-Albright syndrome - A European Collaborative Study. J Clin Endocrinol Metab 2004; 89(5): 2107-13. doi: 10.1210/jc.2003-031225 PMID: 15126527
  64. Robinson C, Collins MT, Boyce AM. Fibrous dysplasia/mccune-albright syndrome: Clinical and translational perspectives. Curr Osteoporos Rep 2016; 14(5): 178-86. doi: 10.1007/s11914-016-0317-0 PMID: 27492469
  65. McCune D. Osteitis fibrosa cystica: The case of a nine year old girl who also exhibits precocious puberty, multiple pigmentation of the skin and hyperthyroidism. Am J Child 1936; 52: 743-4.
  66. Javaid MK, Boyce A, Appelman-Dijkstra N, et al. Best practice management guidelines for fibrous dysplasia/McCune-Albright syndrome: A consensus statement from the FD/MAS international consortium. Orphanet J Rare Dis 2019; 14(1): 139. doi: 10.1186/s13023-019-1102-9 PMID: 31196103
  67. Kumar S, Shah R, Patil V, et al. Tumor-induced rickets-osteomalacia: An enigma. J Pediatr Endocrinol Metab 2020; 33(8): 1097-103. doi: 10.1515/jpem-2020-0079 PMID: 32681779
  68. Emodi O, Rachmiel A, Tiosano D, Nagler RM. Maxillary tumour-induced osteomalacia. Int J Oral Maxillofac Surg 2018; 47(10): 1295-8. doi: 10.1016/j.ijom.2018.02.008 PMID: 29571670
  69. Wolf M, Rubin J, Achebe M, et al. Effects of iron isomaltoside vs ferric carboxymaltose on hypophosphatemia in iron-deficiency anemia. JAMA 2020; 323(5): 432-43. doi: 10.1001/jama.2019.22450 PMID: 32016310
  70. Haque SK, Ariceta G, Batlle D. Proximal renal tubular acidosis: A not so rare disorder of multiple etiologies. Nephrol Dial Transplant 2012; 27(12): 4273-87.
  71. Fearn A, Allison B, Rice SJ, et al. Clinical, biochemical, and pathophysiological analysis of SLC34A1 mutations. Physiol Rep 2018; 6(12)e13715 doi: 10.14814/phy2.13715 PMID: 29924459
  72. Tieder M, Modai D, Samuel R, et al. Hereditary hypophosphatemic rickets with hypercalciuria. N Engl J Med 1985; 312(10): 611-7. doi: 10.1056/NEJM198503073121003 PMID: 2983203
  73. Bugg NC, Jones JA. HypophosphataemiaPathophysiology, effects and management on the intensive care unit. Anaesthesia 1998; 53(9): 895-902. doi: 10.1046/j.1365-2044.1998.00463.x PMID: 9849285
  74. Foster BL, Nociti FH Jr, Somerman MJ. The rachitic tooth. Endocr Rev 2014; 35(1): 1-34. doi: 10.1210/er.2013-1009 PMID: 23939820
  75. Souza MA, Valente Soares LA Junior, dos Santos MA, Vaisbich MH. Dental abnormalities and oral health in patients with Hypophosphatemic rickets. Clinics (São Paulo) 2010; 65(10): 1023-6. doi: 10.1590/S1807-59322010001000017 PMID: 21120305
  76. Haffner D, Emma F, Eastwood DM, et al. Clinical practice recommendations for the diagnosis and management of X-linked hypophos-phataemia. Nat Rev Nephrol 2019; 15(7): 435-55. doi: 10.1038/s41581-019-0152-5 PMID: 31068690
  77. Laurent MR, De Schepper J, Trouet D, et al. Consensus recommendations for the diagnosis and management of X-linked hypophos-phatemia in Belgium. Front Endocrinol 2021; 12641543 doi: 10.3389/fendo.2021.641543 PMID: 33815294
  78. DeLacey S, Liu Z, Broyles A, et al. Hyperparathyroidism and parathyroidectomy in X-linked hypophosphatemia patients. Bone 2019; 127: 386-92. doi: 10.1016/j.bone.2019.06.025 PMID: 31276850
  79. Imel EA, Glorieux FH, Whyte MP, et al. Burosumab versus conventional therapy in children with X-linked hypophosphataemia: A ran-domised, active-controlled, open-label, phase 3 trial. Lancet 2019; 393(10189): 2416-27. doi: 10.1016/S0140-6736(19)30654-3 PMID: 31104833
  80. Padidela R, Cheung MS, Saraff V, Dharmaraj P. Clinical guidelines for burosumab in the treatment of XLH in children and adolescents: British paediatric and adolescent bone group recommendations. Endocr Connect 2020; 9(10): 1051-6. doi: 10.1530/EC-20-0291 PMID: 33112809
  81. Bohm NM, Hoover KC, Wahlquist AE, Zhu Y, Velez JCQ. Case-control study and case series of pseudohyperphosphatemia during expo-sure to liposomal amphotericin B. Antimicrob Agents Chemother 2015; 59(11): 6816-23. doi: 10.1128/AAC.01306-15 PMID: 26282423
  82. Miller MM, Johnson PN, Hagemann TM, Carter SM, Miller JL. Pseudohyperphosphatemia in children treated with liposomal amphotericin B. J Am Soc Health-Syst Pharm 2014; 71(17): 1462-8.
  83. Larner AJ. Pseudohyperphosphatemia. Clin Biochem 1995; 28(4): 391-3. doi: 10.1016/0009-9120(95)00013-Y PMID: 8521592
  84. Liamis G, Liberopoulos E, Barkas F, Elisaf M. Spurious electrolyte disorders: A diagnostic challenge for clinicians. Am J Nephrol 2013; 38(1): 50-7. doi: 10.1159/000351804 PMID: 23817179
  85. Marraffa JM, Hui A, Stork CM. Severe hyperphosphatemia and hypocalcemia following the rectal administration of a phosphate-containing Fleet pediatric enema. Pediatr Emerg Care 2004; 20(7): 453-6. doi: 10.1097/01.pec.0000132217.65600.52 PMID: 15232246
  86. Cheung WL, Hon KL, Fung CM, Leung AK. Tumor lysis syndrome in childhood malignancies. Drugs Context 2020; 9: 2019-8-2. doi: 10.7573/dic.2019-8-2
  87. Szugye HS. Pediatric rhabdomyolysis. Pediatr Rev 2020; 41(6): 265-75. doi: 10.1542/pir.2018-0300 PMID: 32482689
  88. Ramnitz MS, Gourh P, Goldbach-Mansky R, et al. Phenotypic and genotypic characterization and treatment of a cohort with familial tu-moral calcinosis/hyperostosis-hyperphosphatemia syndrome. J Bone Miner Res 2016; 31(10): 1845-54. doi: 10.1002/jbmr.2870 PMID: 27164190
  89. Sprecher E. Tumoral calcinosis: New insights for the rheumatologist into a familial crystal deposition disease. Curr Rheumatol Rep 2007; 9(3): 237-42. doi: 10.1007/s11926-007-0038-6 PMID: 17531178
  90. Metzker A, Eisenstein B, Oren J, Samuel R. Tumoral calcinosis revisited? common and uncommon features. Eur J Pediatr 1988; 147(2): 128-32. doi: 10.1007/BF00442209 PMID: 3366131
  91. Boyce AM, Lee AE, Roszko KL, Gafni RI. Hyperphosphatemic tumoral calcinosis: Pathogenesis, clinical presentation, and challenges in management. Front Endocrinol 2020; 11: 293. doi: 10.3389/fendo.2020.00293 PMID: 32457699
  92. Frishberg Y, Topaz O, Bergman R, et al. Identification of a recurrent mutation in GALNT3 demonstrates that hyperostosis-hyperphosphatemia syndrome and familial tumoral calcinosis are allelic disorders. J Mol Med (Berl) 2005; 83(1): 33-8. doi: 10.1007/s00109-004-0610-8 PMID: 15599692
  93. Chefetz I, Heller R, Galli-Tsinopoulou A, et al. A novel homozygous missense mutation in FGF23 causes Familial Tumoral Calcinosis associated with disseminated visceral calcification. Hum Genet 2005; 118(2): 261-6. doi: 10.1007/s00439-005-0026-8 PMID: 16151858
  94. Ichikawa S, Imel EA, Kreiter ML, et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest 2007; 117(9): 2684-91. doi: 10.1172/JCI31330 PMID: 17710231
  95. Farrow EG, Imel EA, White KE. Hyperphosphatemic familial tumoral calcinosis (FGF23, GALNT3 and αKlotho). Best Pract Res Clin Rheumatol 2011; 25(5): 735-47. doi: 10.1016/j.berh.2011.10.020 PMID: 22142751
  96. Ketteler M, Block GA, Evenepoel P, et al. Diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder: Synopsis of the kidney disease: improving global outcomes 2017 clinical practice guideline update. Ann Intern Med 2018; 168(6): 422-30. doi: 10.7326/M17-2640 PMID: 29459980
  97. Vervloet M. Modifying phosphate toxicity in chronic kidney disease. Toxins (Basel) 2019; 11(9): 522. doi: 10.3390/toxins11090522 PMID: 31505780
  98. Shroff RC, Donald AE, Hiorns MP, et al. Mineral metabolism and vascular damage in children on dialysis. J Am Soc Nephrol 2007; 18(11): 2996-3003. doi: 10.1681/ASN.2006121397 PMID: 17942964
  99. Finer G, Price HE, Shore RM, White KE, Langman CB. Hyperphosphatemic familial tumoral calcinosis: Response to acetazolamide and postulated mechanisms. Am J Med Genet A 2014; 164(6): 1545-9. doi: 10.1002/ajmg.a.36476 PMID: 24668887
  100. Garringer HJ, Fisher C, Larsson TE, et al. The role of mutant UDP-N-acetyl-α-D-galactosamine-polypeptide N-acetylgalactosaminyl- transferase 3 in regulating serum intact fibroblast growth factor 23 and matrix extracellular phosphoglycoprotein in heritable tumoral cal-cinosis. J Clin Endocrinol Metab 2006; 91(10): 4037-42. doi: 10.1210/jc.2006-0305 PMID: 16868048

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024