Stability of Polymer Composite Membranes Based on Fluorinated Polysiloxanes under Tropical Conditions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

One of the key objectives of membrane technology is to improve the resistance to fouling (fouling) and degradation of membrane surface. In this work, the stability properties of selective layer based on fluorinated polysiloxanes were investigated during exposure for 6 months at climatic sites in Vietnam. Three composite membranes on MFFC-1 microfiltration substrate with selective layers: 1) polydecimethylsiloxane (C10), 2) copolymer of C10 and polysiloxane with trifluoroalkylacrylate side group (C10-F3), 3) copolymer of C10 and polysiloxane with perfluorooctyl side group (C10-PFO) were investigated in this work. A comparison of changes in the composition and surface properties of the selective layer, as well as gas transport properties before and after exposure to the test sites was analyzed. It is shown that for membranes based on fluorine-containing polysiloxanes (C10-F3 and C10-PFO) less clogging and degradation of the selective layer polymer is observed. For sample C10, destruction of side alkyl fragments and increase in the concentration of oxygen atoms on the surface of the selective layer was observed, including due to the deposition of microalgae. Membranes C10-F3 showed the greatest stability of gas permeability by CO2 and N2 (change not more than 10%) and the least oxidative degradation.

Texto integral

Acesso é fechado

Sobre autores

T. Rohmanka

A.V. Topchiev Institute of Petrochemical Synthesis RAS

Email: evgrushevenko@ips.ac.ru
Rússia, 29 Leninsky pr., Moscow, 119991

E. Dmitrieva

A.V. Topchiev Institute of Petrochemical Synthesis RAS

Email: evgrushevenko@ips.ac.ru
Rússia, 29 Leninsky pr., Moscow, 119991

T. Anokhina

A.V. Topchiev Institute of Petrochemical Synthesis RAS

Email: evgrushevenko@ips.ac.ru
Rússia, 29 Leninsky pr., Moscow, 119991

Yu. Kostina

A.V. Topchiev Institute of Petrochemical Synthesis RAS

Email: evgrushevenko@ips.ac.ru
Rússia, 29 Leninsky pr., Moscow, 119991

E. Grushevenko

A.V. Topchiev Institute of Petrochemical Synthesis RAS

Autor responsável pela correspondência
Email: evgrushevenko@ips.ac.ru
Rússia, 29 Leninsky pr., Moscow, 119991

Thanh Long Hoang

Southern Branch of Joint Vietnam-Russia Tropical Science and Technology Research Center

Email: evgrushevenko@ips.ac.ru
Vietnã, Ho Chi Minh City 740500

Bibliografia

  1. Huang W., Zhu Y., Wang L., Lv W., Dong B., Zhou W. Reversible and irreversible membrane fouling in hollow-fiber UF membranes filtering surface water: effects of ozone/powdered activated carbon treatment // RSC advances. 2021. V. 11 (17). P. 10323–10335.
  2. Santos A.V., Lin A.R.A., Amaral M.C.S., Oliveira S.M.A.C. Improving control of membrane fouling on membrane bioreactors: A data-driven approach // Chemical Engineering Journal. 2021. V. 426. 131291.
  3. Zhang R., Liu Y., He M., Su Y., Zhao X., Elimelech M., Jiang Z. Antifouling membranes for sustainable water purification: strategies and mechanisms // Chemical Society Reviews. 2016. V. 45 (21). P. 5888–5924.
  4. Rana D., Matsuura T. Surface modifications for antifouling membranes // Chemical reviews. 2010. V. 110 (4). P. 2448–2471.
  5. Magin C.M., Cooper S.P., Brennan A.B. Non-toxic antifouling strategies // Materials today. 2010. V. 13 (4). P. 36–44.
  6. Wang F., Zhang H., Yu B., Wang S., Shen Y., Cong H. Review of the research on anti-protein fouling coatings material // Progress in Organic Coatings. 2020. V. 147. 105860.
  7. Uwaezuoke O.J., Kumar P., Pillay V., Choonara Y.E. Fouling in ocular devices: implications for drug delivery, bioactive surface immobilization, and biomaterial design // Drug Delivery and Translational Research. 2021. V. 11 (5). P. 1903–1923.
  8. Maan A.M.C. et al. Recent developments and practical feasibility of polymer‐based antifouling coatings // Advanced functional materials. 2020. V. 30 (32). 2000936.
  9. Apel P.Yu., Velizarov S., Volkov A.V., Eliseeva T.V., Nikonenko V.V., Parshina A.V., Pismenskaya N.D., Popov K.I., Yaroslavtsev A.B. Fouling and Membrane Degradation in Electromembrane and Baromembrane Processes // Membranes and Membrane Technologies. 2022. V. 4. P. 69–92.
  10. Drews A. Membrane fouling in membrane bioreactors–Characterisation, contradictions, cause and cures // Journal of membrane science. 2010. V. 363 (1–2). P. 1–28.
  11. Volkov V., Borisov I., Golubev G., Vasilevsky V., Matveev D., Bondarenko G., Volkov A. Sorption-assisted thermopervaporation method for organics recovery from ABE fermentation broth // Journal of Chemical Technology & Biotechnology. 2020. V. 95 (1). P. 40–51.
  12. Da-Silva-Correa L.H., Smith H., Thibodeau M.C., Welsh B., Buckley H.L. The application of non-oxidizing biocides to prevent biofouling in reverse osmosis polyamide membrane systems: a review // AQUA–Water Infrastructure, Ecosystems and Society. 2022. V. 71 (2). P. 261–292.
  13. Daly S., Allen A., Koutsos V., Semião A.J. Influence of organic fouling layer characteristics and osmotic backwashing conditions on cleaning efficiency of RO membranes // Journal of Membrane Science. 2020. V. 616. 118604.
  14. Rajendran D.S., Devi E.G., Subikshaa V.S., Sethi P., Patil A., Chakraborty A., Kumar V.V. Recent advances in various cleaning strategies to control membrane fouling: a comprehensive review // Clean Technologies and Environmental Policy. 2024. P. 1–16.
  15. Zhan M., Gwak G., Kim D.I., Park K., Hong S. Quantitative analysis of the irreversible membrane fouling of forward osmosis during wastewater reclamation: Correlation with the modified fouling index // Journal of Membrane Science. 2020. V. 597. 117757.
  16. Zhao S., Liao Z., Fane A., Li J., Tang C., Zheng C., Kong L. Engineering antifouling reverse osmosis membranes: A review // Desalination. 2021. V. 499. 114857.
  17. Khan R. Enhancing the pervaporation performance of PEBA/PVDF membrane by incorporating MAF-6 for the separation of phenol from its aqueous solution // Separation and Purification Technology. 2021. V. 256. 117804.
  18. Liu W., Lin H., Wang J., Han Q., Liu F. Polytetrafluoroethylene (PTFE) hollow fibers modified by hydrophilic crosslinking network (HCN) for robust resistance to fouling and harsh chemical cleaning // Journal of Membrane Science. 2021. V. 630. 119301.
  19. Salimi P., Aroujalian A., Iranshahi D. Graft copolymerization of zwitterionic monomer on the polyethersulfone membrane surface by corona air plasma for separation of oily wastewater // Separation and Purification Technology. 2021. V. 258. 117939.
  20. Kim D.S., Kang J.S., Lee Y.M. Microfiltration of activated sludge using modified PVC membranes: Effect of pulsing on flux recovery // Separation Science and technology. 2003. V. 38 (3). P. 591–612.
  21. Yang Q., Xu Z.K., Dai Z.W., Wang J.L., Ulbricht M. Surface modification of polypropylene microporous membranes with a novel glycopolymer // Chemistry of Materials. 2005. V. 17 (11). P. 3050–3058.
  22. Iwata H., Ivanchenko M.I., Miyaki Y. Preparation of anti‐oil stained membrane by grafting polyethylene glycol macromer onto polysulfone membrane // Journal of Applied Polymer Science. 1994. V. 54 (1). P. 125–128.
  23. Crivello J.Y., Belfort G., Yamagishi H. Chem. Abstr. 1996, 124, 148194r; U.S. Patent 5,468,390, 1995.
  24. Kilduff J.E., Mattaraj S., Pieracci J.P., Belfort G. Photochemical modification of poly (ether sulfone) and sulfonated poly (sulfone) nanofiltration membranes for control of fouling by natural organic matter // Desalination. 2000. V. 132 (1–3). P. 133–142.
  25. Gancarz I., Pozniak G., Bryjak J., Bryjak M., Kunicki J. Plasma modification of polymer membranes. 2007.
  26. Kim K.S., Lee K.H., Cho K., Park C.E. Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment // Journal of Membrane Science. 2002. V. 199 (1–2). P. 135–145.
  27. Lejars M., Margaillan A., Bressy C. Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings // Chemical reviews. 2012. V. 112 (8). P. 4347–4390.
  28. Eduok U., Faye O., Szpunar J. Recent developments and applications of protective silicone coatings: A review of PDMS functional materials // Progress in Organic Coatings. 2017. V. 111. P. 124–163.
  29. Guo W., Ngo H.H., Li J. A mini-review on membrane fouling // Bioresource technology. 2012. V. 122. P. 27–34.
  30. Li B. Synthesis of POSS-containing fluorosilicone block copolym ers via RAFT polymerization for application as non-wetting coating materials // Progress in Organic Coatings. 2015. V. 78. P. 188–199.
  31. Liu Y. Synthesis and characterization of a novel fluorosilicone resin based on trifluoropropylalkoxylsilane // Materials Chemistry and Physics. 2019. V. 224. P. 40–46.
  32. Cornelius D.J., Monroe C.M. The unique properties of silicone and fluorosilicone elastomers // Polymer Engineering & Science. 1985. V. 25 (8). P. 467–473.
  33. Peng H. Synthesis and application of fluorine-containing polymers with low surface energy // Polymer Reviews. 2019. V. 59 (4). P. 739–757.
  34. Zhou C., Shen D., Chai C., Shi B., Zhu B., Wang G. A low dielectric constant material synergized by calix[4]arene and benzocyclobutene units // Journal of Materials Chemistry C. 2023. V. 11 (31). P. 10509–10519.
  35. Rubinsztajn C., Chojnowski J., Mizerska U. Tris(pentafluorophenyl)borane-catalyzed Hydride Transfer Reactions in Polysiloxane Chemistry–Piers–Rubinsztajn Reaction and Related Processes // Molecules. 2023. V. 28 (16). 5941.
  36. Zhang S., Zhang Y., Wang Z., Qiao W. Synthesis and characterizations of polystyrene materials with low dielectric constant and low dielectric loss at high frequency // Journal of Applied Polymer Science. 2023. V. 140 (27). e54012.
  37. Chen S., He T., Li Y., Li X., Zhuang Y., Wang X., Liu Y., Liu X. Significantly reduced intrinsic dielectric constant and loss of nano-silica by direct fluorination // Ceramics International. 2023. V. 49 (14). P. 22816–22825.
  38. Owen M.J. Surface tension of polytrifluoropropylmethylsiloxane // Journal of Applied Polymer Science. 1988. V. 35 (4). P. 895–901.
  39. Graham P. Fluoropolymers with very low surface energy characteristics // Journal of Fluorine Chemistry. 2000. V. 104 (1). P. 29–36.
  40. Grushevenko E.A. Effect of OH-Group Introduction on Gas and Liquid Separation Properties of Polydecylmethylsiloxane // Polymers. 2023. V. 15 (3). P. 723.
  41. Lyadov A. Effects of the Tropical Climate of Vietnam on the Properties of Synthetic Greases with Urea Thickeners // Petroleum Chemistry. 2023. V. 63 (8). P. 1002–1008.
  42. Borisov I.L., Grushevenko E.A., Anokhina T.S., Bakhtin D.S., Levin I.S., Bondarenko G.N., Volkov A.V. Influence of side chains assembly on the structure and transport properties of comb-like polysiloxanes in hydrocarbon separation // Materials Today Chemistry. 2021. V. 22. 100598.
  43. Noi P.T., Kappas M., Degener J. Estimating daily maximum and minimum land air surface temperature using MODIS land surface temperature data and ground truth data in Northern Vietnam // Remote Sensing. 2016. V. 8 (12). P. 1002.
  44. Zhu H., Li X., Pan Y., Liu G., Wu H., Jiang M., Jin W. Fluorinated PDMS Membrane with Anti-biofouling Property for in-situ Biobutanol Recovery from Fermentation-Pervaporation Coupled Process // J. Membr. Sci. 2020. V. 609. 118225.
  45. Zheng X. Fabrication of UV-curable fluorosilicone coatings with impressive hydrophobicity and solvent resistance // Progress in Organic Coatings. 2020. V. 144. 105633.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Laboratory setup for measuring the gas permeability of a mixture.

Baixar (12KB)
3. Fig. 2. SEM images of the surface of the selective layer of membranes M–C10, M–F3 and M–PFO before and after long-term exposure to the climate of Vietnam.

Baixar (946KB)
4. Fig. 3. Optical images of M-C10, M-F3 and M-PFO membranes before and after long-term exposure at the Con Zo and Hoa Lac Scientific Research Institute and the Dam Bai Scientific Research Institute.

Baixar (997KB)
5. Fig. 4. Changes in the contact angle of wetting of the surface of the selective layer of composite membranes M–C10, M–F3 and M–PFO before and after exposure for 6 months at the testing stations of the Tropcenter.

Baixar (193KB)
6. Fig. 5. IR-ATR spectra of the initial M-10 membrane (curve 1) and M-10 membranes after exposure to the KIS Hoa Lac (curve 2), Kon Zo (curve 3) and MNIIS Dam Bai (curve 4) in the middle region of the IR spectrum (a), in the region of absorption of C=O bonds (b) and vibrations of the skeleton of CH bonds at – (СН₂)₄₊ – (c). The inset shows the region of absorption of stretching vibrations of CH and associated NH bonds.

Baixar (976KB)
7. Fig. 6. IR-ATR spectra of the initial M–F3 membrane (curve 1) and M–F3 membranes after exposure to the Khoa Lak (curve 2), Kon Zo (curve 3) and Dam Bai (curve 4) KIS in the middle region of the IR spectrum (a), in the region of absorption of C=O bonds (b) and vibrations of the skeleton of CH bonds at – (СН₂)₄₊ – (c). The inset shows the region of absorption of stretching vibrations of CH and associated NH bonds.

Baixar (954KB)
8. Fig. 7. IR-ATR spectra of the initial M–PFO membrane (curve 1) and M–PFO membranes after exposure to the Khoa Lak (curve 2), Kon Zo (curve 3) and Dam Bai (curve 4) KIS in the middle region of the IR spectrum (a), in the region of absorption of C=O bonds (b) and vibrations of the skeleton of CH bonds at –(СН₂)₄₊ – (c). The inset shows the absorption region of stretching vibrations of CH and associated NH bonds.

Baixar (962KB)
9. Fig. 8. Relative content of CH₂/CH₃ groups in polysiloxane membranes depending on the climatic conditions of Vietnam, % of the original.

Baixar (170KB)
10. Fig. 9. Data on changes in insolation (a) and air humidity (b) in the period from June (6) to November (11) at the climatic sites of Vietnam.

Baixar (246KB)
11. Fig. 10. Change in the integral intensity in the absorption region of C=O bonds of various functional groups in the IR-ATR spectra of membranes before and after exposure at the Tropcenter test stations.

Baixar (218KB)
12. Fig. 11. Relative change in permeability of CO₂ (a), N₂ (b) and ideal selectivity CO₂/N₂ (c) after exposure at the Tropcenter test stations.

Baixar (454KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025