Composite cation exchange membrane based оn а polyvinyldene fluoride substrate filled with perfluorinated sulfopolymer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The composite cation-exchange membrane is fabricated by impregnating an inert isotropic substrate with a three-dimensional network of nanofibers made of a perfluorinated sulfonated polymer. The membrane's surface morphology and structure are analyzed using scanning electron microscopy. The thickness, exchange capacity, moisture content, volume fractions of the gel phase, concentration dependences of the specific electrical conductivity, diffusion permeability and counterion transport numbers of the membranes are determined in NaCl solutions. These characteristics are compared with those of the commercial reinforced membrane Nafion® N438. The developed membrane exhibits higher selectivity and lower electrical resistance than the commercial benchmark while requiring less perfluorinated sulfonated polymer for production. The combination of these factors indicates the prospects of the developed domestic membrane and its potential competitiveness.

Full Text

Restricted Access

About the authors

M. A. Ponomar

Kuban State University

Email: vsarapulova@gmail.com
Russian Federation, Krasnodar, 350040

M. V. Porozhnyy

Kuban State University

Email: vsarapulova@gmail.com
Russian Federation, Krasnodar, 350040

V. V. Sarapulova

Kuban State University

Author for correspondence.
Email: vsarapulova@gmail.com
Russian Federation, Krasnodar, 350040

E. S. Korzhova

Krasnodar Compressor Plant LLC

Email: vsarapulova@gmail.com
Russian Federation, Krasnodar region, Dinskaya, 353204

D. S. Lopatin

Krasnodar Compressor Plant LLC

Email: vsarapulova@gmail.com
Russian Federation, Krasnodar region, Dinskaya, 353204

I. V. Voroshilov

Krasnodar Compressor Plant LLC

Email: vsarapulova@gmail.com
Russian Federation, Krasnodar region, Dinskaya, 353204

References

  1. Filippov S.P., Yaroslavtsev A.B. // Russ. Chem. Rev. 2021. V. 90. № 6. P. 627–643.
  2. Sengupta S., Lyulin A.V. // J. Phys. Chem. B. 2019. V. 123. № 31. P. 6882–6891.
  3. Cognard G., Ozouf G., Beauger C., Dubau L., López-Haro M., Chatenet M., Maillard F. // Electrochim. Acta. 2017. V. 245. P. 993–1004.
  4. Yampolskii Y.P., Belov N.A., Alentiev A.Y. // Russ. Chem. Rev. 2019. V. 88. № 4. P. 387–405.
  5. Stenina I.A., Yaroslavtsev A.B. // Pure Appl. Chem. 2017. V. 89. № 8. P. 1185–1194.
  6. Vinothkannan M., Son B., Shanmugam S. // J. Mater. Chem. A. 2022. V. 10. № 16. P. 8975–8988.
  7. Baker A.M., Wang L., Johnson W.B., Prasad A.K., Advani S.G. // J. Phys. Chem. C. 2014. V. 118. № 46. P. 26796–26802.
  8. Vinothkannan M., Kim A.R., Ryu S.K., Yoo D.J. // J. Memb. Sci. 2022. V. 649. P. 120393.
  9. Vinothkannan M., Kim A.R., Ramakrishnan S., Yu Y.-T., Yoo D.J. // Compos. Part B Eng. 2021. V. 215. P. 108828.
  10. Grot W. Fluorinated Ionomers. Waltham: Elsevier Inc., 2011. 312 p.
  11. Liu Y., Nguyen T., Kristian N., Yu Y., Wang X. // J. Memb. Sci. 2009. V. 330. № 1–2. P. 357–362.
  12. Wu B., Zhao M., Shi W., Liu W., Liu J., Xing D., Yao Y., Hou Z., Ming P., Gu J., Zou Z. // Int. J. Hydrogen Energy. 2014. V. 39. № 26. P. 14381–14390.
  13. Kusoglu A., Weber A.Z. // Chem. Rev. 2017. V. 117. № 3. P. 987–1104.
  14. Shi S., Weber A.Z., Kusoglu A. // J. Memb. Sci. 2016. V. 516. P. 123–134.
  15. Mukundan R., Baker A.M., Kusoglu A., Beattie P., Knights S., Weber A.Z., Borup R.L. // J. Electrochem. Soc. 2018. V. 165. № 6. P. F3085–F3093.
  16. Robert M., El Kaddouri A., Perrin J.-C., Leclerc S., Lottin O. // J. Electrochem. Soc. 2018. V. 165. № 6. P. F3209–F3216.
  17. Zhang X., Trieu D., Zheng D., Ji W., Qu H., Ding T., Qiu D., Qu D. // Ind. Eng. Chem. Res. 2021. V. 60. № 30. P. 11086–11094.
  18. Lin Q., Sun X., Chen X., Shi S. // Fuel Cells. 2019. V. 19. № 5. P. 530–538.
  19. Zhang H., Shen P.K. // Chem. Soc. Rev. 2012. V. 41. № 6. P. 2382.
  20. Dorenbos G., Morohoshi K. // Energy Environ. Sci. 2010. V. 3. № 9. P. 1326.
  21. Yildirim M.H., Stamatialis D., Wessling M. // J. Memb. Sci. 2008. V. 321. № 2. P. 364–372.
  22. Jagur‐Grodzinski J. // Polym. Adv. Technol. 2007. V. 18. № 10. P. 785–799.
  23. Ji Y.-L., Lu H.-H., Gu B.-X., Ye R.-F., Zhou Y., An Q.-F., Gao C.-J. // Chem. Eng. J. 2021. V. 416. P. 129080.
  24. Mollá S., Compañ V., Gimenez E., Blazquez A., Urdanpilleta I. // Int. J. Hydrogen Energy. 2011. V. 36. № 16. P. 9886–9895.
  25. Saleem J., Gao P., Barford J., McKay G. // J. Mater. Chem. A. 2013. V. 1. № 45. P. 14335.
  26. Zhang C., Yue X., Luan J., Lu N., Mu Y., Zhang S., Wang G. // ACS Appl. Energy Mater. 2020. V. 3. № 7. P. 7180–7190.
  27. Hu H., Ding F., Ding H., Liu J., Xiao M., Meng Y., Sun L. // Adv. Compos. Hybrid Mater. 2020. V. 3. № 4. P. 498–507.
  28. Cha J.-E., Cho W.J., Hwang J., Seo D.-J., Choi Y.-W., Kim W.B. // Sci. Rep. 2022. V. 12. № 1. P. 14001.
  29. Miyake J., Watanabe T., Shintani H., Sugawara Y., Uchida M., Miyatake K. // ACS Mater. Au. 2021. V. 1. № 1. P. 81–88.
  30. Коржова Е.С., Лопатин Д.С., Баранов О.А., Ворошилов И.В. Пат. 231738 Протонообменная полимерная мембрана. Россия, 2024.
  31. Yesaswi C.S., Sreekanth P.S.R. // Mater. Today Proc. 2020. V. 27. P. 936–939.
  32. Березина Н.П., Тимофеев С.В., Ролле А.Л., Федорович Н.В., Дюран-Видаль С. // Электрохимия. 2002. Т. 38. № 8. С. 1009–1015.
  33. Gloukhovski R., Tsur Y., Freger V. // Fuel Cells. 2017. V. 17. № 1. P. 56–66.
  34. Berezina N.P., Kononenko N.A., Dyomina O.A., Gnusin N.P. // Adv. Colloid Interface Sci. 2008. V. 139. № 1–2. P. 3–28.
  35. Карпенко Л.В., Демина О.А., Дворкина Г.А., Паршиков С.Б., Ларше К., Оклер Б., Березина Н.П. // Электрохимия. 2001. Т. 37. № 3. С. 328–335.
  36. Pismenskaya N.D., Nevakshenova E.E., Nikonenko V. V. // Pet. Chem. 2018. V. 58. № 6. P. 465–473.
  37. Zabolotsky V.I., Nikonenko V.V. // J. Memb. Sci. 1993. V. 79. № 2–3. P. 181–198.
  38. Sarapulova V., Shkorkina I., Mareev S., Pismenskaya D., Kononenko N., Larchet C., Dammak L., Nikonenko V. // Membranes (Basel). 2019. V. 9. № 7. P. 84.
  39. Sarapulova V.V., Titorova V.D., Nikonenko V.V., Pismenskaya N.D. // Membr. Membr. Technol. 2019. V. 1. № 3. P. 168–182.
  40. Butylskii D., Moroz I., Tsygurina K., Mareev S. // Membranes (Basel). 2020. V. 10. № 3. P. 40.
  41. Sarapulova V., Pismenskaya N., Butylskii D., Titorova V., Wang Y., Xu T., Zhang Y., Nikonenko V. // Membranes (Basel). 2020. V. 10. № 8. P. 165.
  42. Larchet C., Auclair B., Nikonenko V. // Electrochim. Acta. 2004. V. 49. № 11. P. 1711–1717.
  43. Stenina I., Golubenko D., Nikonenko V., Yaroslavtsev A. // Int. J. Mol. Sci. 2020. V. 21. № 15. P. 5517.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Images of the surfaces and cross-section of the membranes M1 (a, b) and N438 (c, d), obtained by optical microscopy (a, c) and using a scanning electron microscope (b, d). The inset to Fig. b shows an image of the PVDF substrate.

Download (470KB)
3. Fig. 2. Concentration dependences of surface resistance Rm (a) and diffusion flow of electrolyte Js (b) of membranes M1 and Nafion® N438.

Download (139KB)
4. Fig. 3. Concentration dependences of specific electrical conductivity (a) and integral coefficient of diffusion permeability (b) of membranes M1 and Nafion® N438.

Download (136KB)
5. Fig. 4. Concentration dependences of counterion transport numbers for the M1 membrane and the Nafion® N438 membrane.

Download (84KB)

Copyright (c) 2025 Russian Academy of Sciences