Experimental study: youth compared to the experience of adulthood in terms of features of stress response
- 作者: Kondashevskaya M.V.1, Aleksankina V.V.1, Artem'eva K.A.1, Anurkina A.I.1, Kasabov K.A.1, Areshidze D.A.1, Mikhaleva L.M.1
-
隶属关系:
- Avtsyn Research Institute of Human Morphology Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”
- 期: 卷 523, 编号 1 (2025)
- 页面: 410-416
- 栏目: Articles
- URL: https://medjrf.com/2686-7389/article/view/693499
- DOI: https://doi.org/10.31857/S2686738925040058
- ID: 693499
如何引用文章
详细
Age differences in the response to acute stress in the organism of young and mature reproductive-age male inbred Wistar rats were studied. It was found that stress determines an increase in the corticosterone level in both age groups, which is accompanied by a decrease in the testosterone level and an increase in the leptin concentration. In response to stress, young rats show a classic decrease in the mass coefficients (MC) of the thymus and liver, as well as an increase in the MC of the adrenal glands and heart. Contrary to the typical reaction, aged rats show a decrease in the MC of the adrenal glands and stability of the MC of other visceral organs under all experimental conditions. When testing after stress in the elevated plus maze (EPM), the behavior of both groups changed in different directions: in young rats, exploratory activity decreased, while in adults it increased. A concept has been put forward that as a result of accumulated life experience, neurons of the dorsal part of the paraventricular nucleus and cerebellum of mature reproductive age rats passed into a state of excitation, which was expressed in the intensification of locomotor activity (LA) and an increase in the effectiveness of the decision-making mechanisms for choosing the direction of movement in the EPM. While the lack of such experience in young animals caused the inhibition of the LA speed and decision-making mechanisms, inducing a feeling of uncertainty when orienting in the space of the EPM. The data obtained can have a wide range of applications in preclinical studies related to health, aging, stress and modeling of various diseases.
作者简介
M. Kondashevskaya
Avtsyn Research Institute of Human Morphology Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”
Email: marivladiko@mail.ru
Moscow, Russian Federation
V. Aleksankina
Email: marivladiko@mail.ru
K. Artem'eva
Email: marivladiko@mail.ru
A. Anurkina
Email: marivladiko@mail.ru
K. Kasabov
Email: marivladiko@mail.ru
D. Areshidze
Email: marivladiko@mail.ru
L. Mikhaleva
编辑信件的主要联系方式.
Email: marivladiko@mail.ru
参考
- Attanasio C., Palladino A., Giaquinto D. et al. Morphological phenotyping of the aging cochlea in inbred C57BL/6N and outbred CD1 mouse strains // Aging Cell. 2025. V. 24, № 1. P. 14362.
- Lu M., Li K., Zhou Y., Xiao J. Identification of the genetic background of laboratory rats through amplicon-based next-generation sequencing for single-nucleotide polymorphism genotyping // BMC Genom Data. 2024. V. 25, № 1. P. 84.
- Percie du Sert N., Hurst V., Ahluwalia A. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research // PLoS Biol. 2020. V. 18, № 7. P. e3000410.
- Абрашова Т.В., Гущин Я. А., Ковалева М. А. и др. Физиологические, биохимические и биометрические показатели нормы экспериментальных животных. Справочник. СПБ.: Изд-во “ЛЕМА”. 2013. 116 с.
- Marosi M., Rákos G., Robotka H. et al. Hippocampal (CA1) activities in Wistar rats from different vendors. Fundamental differences in acute ischemia // Neurosci Methods. 2006. V. 156, № 1–2. P. 231–235.
- Луговик И.А., Макарова М. Н. Токсикологические исследования. Референтные интервалы массовых коэффициентов внутренних органов на выборке, состоящей из 1000 аутбредных крыс // Лабораторные животные для научных исследований. 2021. № 1. С. 3–11.
- Horowitz G.L. (ed). CLSI. Defining, establishing, and verifying reference intervals in the clinical laboratory; approved guideline – third edition. CLSI document EP28-A3c. Wayne, Pa., USA: CLSI. 2010.
- Никольская К.А., Кондашевская М. В. Психостимулирующие эффекты высокомолекулярного гепарина при внутрибрюшинном введении крысам линии Вистар // Журнал Высшей нервной деятельности им. И. П. Павлова. 2001. Т. 5, № 2. С. 2013–219.
- Nikol'skaya K.A., Kondashevskaya M. V., Serkova V. V., Diatropov M. E. Systemic effects of testosterone: hormonal and behavioral mechanisms // Bull. Exp. Biol. Med. 2016. V. 160, № 5. P. 622–624.
- Borbélyová V., Šarayová V., Renczés E. et al. The effect of long-term hypogonadism on body composition and morphometry of aged male Wistar rats // Physiol Res. 2021. V. 70. S3. P. S357–S367.
- Veldhuis J.D., Keenan D. M., Iranmanesh A. Effects of aging on hypothalamic-pituitary-adrenal axis activity in male Wistar rats // Endocrinology. 2002. V. 143, № 11. P. 4404–4411.
- Decaroli M.C., Rochira V. Aging and sex hormones in males // Virulence. 2017. V. 8, № 5. P. 545–570.
- Charpentier M.S., Whirledge S., Boggs P. A. et al. Effect of chronic restraint stress on testicular steroidogenesis and spermatogenesis in adult male rats // Endocrinology. 2013. V. 154, № 4. P. 1860–71.
- Casabiell X., Piñeiro V., Vega F. et al. Leptin, reproduction and sex steroids // Pituitary. 2001. V. 4, № 1–2. P. 93–99.
- Tena-Sempere M., Barreiro M. L. Leptin in male reproduction: the testis paradigm // Mol Cell Endocrinol. 2002. V. 188, № 1–2. P. 9–13.
- Петросян К.А., Ефимов А. А., Курзин Л. М., Буров В. В. К вопросу о возрастных изменениях массы внутренних органов человека // Вестник российских университетов. Математика. 2013. Т. 18, № 1. С. 353–355.
- Anstey N.J., Kapgal V., Tiwari S. et al. Imbalance of flight-freeze responses and their cellular correlates in the Nlgn3(–/y) rat model of autism // Mol Autism. 2022. V. 13, № 1. P. 34.
- Lawrenson C., Paci E., Pickford J. et al. Cerebellar modulation of memory encoding in the periaqueductal grey and fear behaviour // Elife. 2022. V. 11. P. e76278.
补充文件
