Preparation of 6-azido-2-chloropurine-2′-deoxyriboside by enzymatic transglycosylation reaction catalyzed by Lactobacillus leichmannii type 2 nucleoside deoxyribosyltransferase
- Authors: Alexeev C.S.1, Konkina M.A.1,2, Kurochkin N.N.1, Drenichev M.S.1
-
Affiliations:
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
- Lomonosov Institute of Fine Chemical Technologies, MIREA Russia Technological University
- Issue: Vol 523, No 1 (2025)
- Pages: 431-438
- Section: Articles
- URL: https://medjrf.com/2686-7389/article/view/693503
- DOI: https://doi.org/10.31857/S2686738925040098
- ID: 693503
Cite item
Abstract
6-azido-2-chloropurine-2′-deoxyriboside, a valuable precursor for the preparation of modified 2-chloropurine nucleosides substituted at the 6-position of the heterocyclic base, was obtained by enzymatic transglycosylation. 6-azido-2-chloropurine-2′-deoxyriboside can also be used as a photocross-linking agent to study the nucleic acids – proteins interactions. A type 2 nucleoside deoxyribosyltransferase from Lactobacillus leichmannii was used as a biocatalyst. The optimal conditions for the formation of 6-azido-2-chloropurine-2′-deoxyriboside using 7-methyl-2′-deoxyguanosine as a carbohydrate residue donor were determined.
About the authors
C. S. Alexeev
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: micelle@mail.ru
Moscow, Russian Federation
M. A. Konkina
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Lomonosov Institute of Fine Chemical Technologies, MIREA Russia Technological University
Email: cyril.alex@eimb.ru
Moscow, Russian Federation; Moscow, Russian Federation
N. N. Kurochkin
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: micelle@mail.ru
Moscow, Russian Federation
M. S. Drenichev
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Author for correspondence.
Email: micelle@mail.ru
Moscow, Russian Federation
References
- Iglesias L.E., Lewkowicz E. S., Medici R., et al. Biocatalytic approaches applied to the synthesis of nucleoside prodrugs // Biotechnol. Adv. 2015, Vol. 33, N5. P. 412–434. doi: 10.1016/j.biotechadv.2015.03.009
- Holguin J., Cardinaud R. Trans-N-Deoxyribosylase: Purification by Affinity Chromatography and Characterization // Eur. J. Biochem. 1975. Vol. 54, N2. P. 505–514. PMID: 1175596. https://doi.org/10.1111/j.1432–1033.1975.tb04163.x;
- Kaminski P. A. Functional Cloning, Heterologous Expression, and Purification of Two Different N-Deoxyribosyltransferases from Lactobacillus helveticus // J. Biol. Chem. 2002. Vol. 277, N17. P. 14400–14407. PMID: 11836245. https://doi.org/10.1074/jbc.M111995200
- Del Arco J., Perona A., González L., et al. Reaction mechanism of nucleoside 2′-deoxyribosyltransferases: free-energy landscape supports an oxocarbenium ion as the reaction intermediate. // Org. Biomol. Chem. 2019. Vol. 17, N34. P. 7891–7899. https://doi.org/10.1039/c9ob01315f.
- Becker J., Brendel M. Rapid Purification and Characterization of Two Distinct N-Deoxyribosyltransferases of Lactobacillus leichmannii // Biol. Chem. Hoppe Seyler. 1996. Vol. 377, N6. P. 357–362. PMID: 8839981. https://doi.org/10.1515/bchm3.1996.377.6.357
- Crespo N, Sánchez-Murcia P. A., Gago F., et. al. 2′-Deoxyribosyltransferase from Leishmania mexicana, an efficient biocatalyst for one-pot, one-step synthesis of nucleosides from poorly soluble purine bases // Appl. Microbiol. Biotechnol. 2017. Vol. 101, N19. P. 7187–7200. PMID: 28785897. https://doi.org/10.1007/s00253-017-8450-y
- Pérez E., Sánchez-Murcia P. A., Jordaan J., et. al. Enzymatic Synthesis of Therapeutic Nucleosides using a Highly Versatile Purine Nucleoside 2'-DeoxyribosylTransferase from Trypanosoma brucei // Chem. Cat. Chem. 2018. Vol. 10, N19. P. 4406–4416. https://doi.org/10.1002/cctc.201800775
- Cardinaud R, Holguin J. Nucleoside deoxyribosyltransferase-II from Lactobacillus helveticus. Substrate specificity studies. Pyrimidine bases as acceptors // Biochim. Biophys. Acta – Enzymology. 1979. Vol. 568, N2. P. 339–347. PMID: 486487. https://doi.org/10.1016/0005-2744(79)90301-2
- Fernández-Lucas J., Acebal C., Sinisterra J. V., et al. Lactobacillus reuteri 2′-Deoxyribosyltransferase, a Novel Biocatalyst for Tailoring of Nucleosides // Appl. Environ. Microbiol. 2010. Vol. 76, N5. P. 1462–1470. PMID: 20048065; PMCID: PMC2832402. https://doi.org/10.1128/AEM.01685-09
- Del Arco J., Acosta J., Fernández-Lucas J. New trends in the biocatalytic production of nucleosidic active pharmaceutical ingredients using 2′-deoxyribosyltransferases // Biotechnol. Adv. 2021. Vol. 51. P. 107701. PMID: 33515673 https://doi.org 10.1016/ j.biotechadv.2021.107701
- Kovaļovs A., Novosjolova I, Bizdēna Ē., et al. 1, 2, 3-Triazoles as leaving groups in purine chemistry: a three-step synthesis of N6-substituted-2-triazolyl-adenine nucleosides and photophysical properties thereof //Tetrahedron Letters. 2013. Vol. 54, N8. P. 850–853. https://doi.org/10.1016/j.tetlet.2012.11.095
- Meisenheimer K. M., Koch T. H. Photocross-Linking of Nucleic Acids to Associated Proteins // Critical Reviews in Biochemistry and Molecular Biology. 1997. Vol. 32, N2. P. 101–140. https://doi.org/10.3109/10409239709108550
- Salihovic A., Ascham A., Taladriz-Sender A., et al. Gram-scale enzymatic synthesis of 2′-deoxyribonucleoside analogues using nucleoside transglycosylase-2 // Chem. Sci. 2024. Vol. 15. P. 15399–15407. https://doi.org/10.1039/D4SC04938As
- Konkina M.A., Drenichev M. S., Nasyrova D. I., et al. Studies on enzymatic transglycosylation catalyzed by bacterial Nucleoside deoxyribosyltransferase II and Nucleoside phosphorylase for the synthesis of pyrimidine 2′-Deoxyribonucleosides containing modified heterocyclic base // Sustain. Chem. and Pharm. 2023. Vol. 32. P. 101011. https://doi.org/10.1016/j.scp.2023.101011
- Frieden M., Aviñó A., Eritja R. Convenient Synthesis of 8-Amino-2′-deoxyadenosine // Nucleosides, Nucleotides & Nucleic Acids. 2003. Vol. 22, N2. P. 193–202. https://doi.org/10.1081/NCN-120019521
- Lakshman M. K., Singh M. K., Parrish D., et al. Azide– Tetrazole equilibrium of C-6 azidopurine nucleosides and their ligation reactions with alkynes // The Journal of organic chemistry. 2010. Vol. 75, N8. P. 2461–2473.
- Drenichev M.S., Alexeev C. S., Kurochkin N. N., et al. Use of nucleoside phosphorylases for the preparation of purine and pyrimidine 2′-deoxynucleosides. // Adv. Synth. Catal. 2018. Vol.360. P. 305–312. https://doi.org/10.1002/adsc.201701005.
- Rabuffetti M., Bavaro, T., Semproli, R., et al. Synthesis of ribavirin, tecadenoson, and cladribine by enzymatic transglycosylation. // Catalysts. 2019. Vol. 9. P. 355. doi: 10.3390/catal9040355.
- Komodziński K., Nowak J., Lepczyńska J., et. al. Photochemistry of 6-azidopurine ribonucleoside in aqueous solution // Tetrahedron Lett. 2012. Vol. 53, N18. P. 2316–2318. https://doi.org/10.1016/j.tetlet.2012.02.103.
Supplementary files
