Expression Level of Carotenoid Biosynthesis Genes in Leaves Is Associated with Cold Tolerance of Zea mays L. Plants

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The expression profile of key carotenoid biosynthesis genes (ZmPSY1, ZmPSY2, ZmLcyE) was determined in the dynamics of cold stress and post-stress recovery in the leaves of Zea mays L. plants of four cold-resistant (breeders' data) inbred lines: L-5580-1, L-6097-1, L-5254-3 and L-5272-6. It has been shown that under normal growing conditions the expression level of all three genes in the L-5580-1 line is significantly higher compared to other lines. It was revealed that low-temperature exposure affects the trends of gene expression fluctuations in a similar way between the lines. It was determined that in the dynamics of stress, the leaves of L-5580-1 plants are characterized by coordination of the co-expression pattern of the ZmPSY1 and ZmPSY2 genes with changes in the carotenoid content.

Sobre autores

D. Arkhestova

Institute of Bioengineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: shchennikova@yandex.ru
Moscow, Russian Federation

E. Kochieva

Institute of Bioengineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences; Moscow State University

Email: shchennikova@yandex.ru
Moscow, Russian Federation; Moscow, Russian Federation

A. Shchennikova

Institute of Bioengineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: shchennikova@yandex.ru
Moscow, Russian Federation

Bibliografia

  1. Waadt R., Seller C. A., Hsu P. K., et al. // Nat. Rev. Mol. Cell Biol. 2022. V. 23(10). P. 680–694.
  2. Kidokoro S., Shinozaki K., Yamaguchi-Shinozaki K. // Trends Plant Sci. 2022. V. 27(9). P. 922–935.
  3. Matsuoka Y., Vigouroux Y., Goodman M. M., et al. // Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 6080–6084.
  4. Afrouz M., Sayyed R. Z., Fazeli-Nasab B., et al. // Peer J. 2023. V. 11. P. e15644.
  5. Soualiou S., Duan F., Li X., et al. // J. Exp. Bot. 2023. V. 74(10). P. 3142–3162.
  6. Ma H., Liu C., Li Z., et al. // Plant Physiol. 2018. V. 178(2). P. 753–770.
  7. Waititu J.K., Cai Q., Sun Y., et al. // Genes (Basel). 2021. V. 12(10). P. 1638.
  8. Rosas-Saavedra C., Stange C. // Subcell. Biochem. 2016. V. 79. P. 35–69.
  9. Zunjare R.U., Hossain F., Muthusamy V., et al. // Front. Plant Sci. 2018. V. 9. P. 178.
  10. Gallagher C.E., Matthews P. D., Li F., et al. // Plant Physiol. 2004. V. 135. P. 1776–1783.
  11. Li F., Vallabhaneni R., Wurtzel E. T. // Plant Physiol. 2008. V. 146(3). P. 1333–1345.
  12. Li F., Vallabhaneni R., Yu J., et al. // Plant Physiol. 2008. V. 147(3). P. 1334–1346.
  13. Efremov G.I., Slugina M. A., Shchennikova A. V., et al. // Plants. 2020. V. 9(9). P. 1169.
  14. Bonnecarrère V., Borsani O., Díaz P., et al. // Plant Sci. 2011. V. 180(5). P. 726–732.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025