Crystallization of monosulfide solid solution under diamond formation parameters: experiments in the Fe‒Ni‒S system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The samples of monosulfide solid solution (Mss) based on α-NiS and FeS were obtained at P = 7.0 GPa and T = 900–1500°C with previously synthesized sulfide compounds by solid-phase method at T = 400–600°C. The structural and textural characteristics of the samples were identified and the unit cell parameters of the investigated sulfides were determined. Based on the revealed features and chemical compositions a fragment of the phase diagram in the Fe–Ni–S system with the assumed solidus and liquidus lines was constructed. According to the obtained results, in the studied range of compositions a continuous series of solid solutions of minerals (Mss) is formed. The evolution of the composition of monosulfide solid solution and corresponding sulfide melt under diamond formation conditions as a function of temperature change was traced. We have preliminary estimated the maximum Ni content in sulfide melts (up to 58 wt. %), which may crystallize the minerals found in inclusions in natural diamonds of the peridotite association.

Full Text

Restricted Access

About the authors

N. Y. Sharapova

D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences

Author for correspondence.
Email: sharapovani@iem.ac.ru
Russian Federation, Chernogolovka, Moscow district

A. V. Bobrov

D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences; M.V. Lomonosov Moscow State University

Email: sharapovani@iem.ac.ru

Faculty of Geology

Russian Federation, Chernogolovka, Moscow district; Moscow

A. V. Spivak

D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences

Email: sharapovani@iem.ac.ru
Russian Federation, Chernogolovka, Moscow district

Y. B. Shapovalov

D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences

Email: sharapovani@iem.ac.ru

Corresponding Member of the RAS

Russian Federation, Chernogolovka, Moscow district

References

  1. Harris J.W., Gurney J.J. Inclusions in diamond / In: The properties of diamond (ed. J. E. Field). London: Academ. Press. 1979. P. 555–591.
  2. Ефимова Э.С., Соболев Н.В., Поспелова Л.П. Включения сульфидов в алмазах и особенности их парагенезиса // Записки минералогического общества. 1983. 3. С. 300–310.
  3. Гаранин В.К. Минералогия кимберлитов и родственных им пород алмазоносных провинций России в связи с их генезисом и поисками. М.: МГУ, 2006.
  4. Taylor L.A., Anand M. Diamonds: time capsules from the Siberian Mantle // Chemie der Erde. 2004. V. 64. P. 1–74.
  5. Тэйлор Л.А., Ли Я. Включения сульфидов в алмазах не являются моносульфидным твердым раствором // Геология и геофизика. 2009. V. 50(12). P. 1547‒1559.
  6. Литвин Ю.А., Бутвина В.Г. Алмазообразующие среды в системе эклогит-карбонатит-сульфид-углерод по данным экспериментов при 6.0–8.5 ГПа // Петрология. 2004. Т. 12. № 4. С. 426–438.
  7. Pal’yanov Yu.N., Borzdov Yu.M., Bataleva Yu.V., Sokol A.G., Pal’yanova G.A., Kupriyanov I.N. Reducing role of sulfides and diamond formation in the Earth’s mantle // Earth Planet. Sci. Lett. 2007. V. 260. P. 242–256.
  8. Литвин Ю.А., Бутвина В.Г., Бобров А.В., Жариков В.А. Первые синтезы алмаза в сульфид-углеродных системах: роль сульфидов в генезисе алмаза // ДАН. 2002. V. 382(1). P. 106–109.
  9. Klein-BenDavid O., Logvinova A.M., Izraeli E., Sobolev N.V., Navon O. Sulfide melt inclusions in Yubileinaya (Yakutia) diamonds / 8th Int. In Kimber. Conf., Exten. Abstr. FLA_0111, Victoria, Canada. 2003.
  10. Kemppinen L.I., Kohn S.C., Parkinson I.J., Bulanova G.P., Howell D., Smith C.B. Identification of molybdenite in diamond-hosted sulphide inclusions: Implications for Re–Os radiometric dating // Earth Planet. Sci Lett. 2018. V. 495. P. 101–111. https://doi.org/10.1016/j.epsl.2018.04.037
  11. Logvinova A.M., Sharygin I.S. Second natural occurrence of KFeS2 (Hanswilkeite): An inclusion in diamond from the Udachnaya kimberlite pipe (Siberian Craton, Yakutia) //Minerals. 2023. V. 13(7). P. 874. https://doi.org/10.3390/min13070874
  12. Bulanova G.P, Griffin W.L., Ryan C.G., Shestakova O.Y., Barnes S.J. Trace elements in sulfide inclusions from yakutian diamonds // Contrib to Mineral Petrol. 1996. V. 124. P. 111–125.
  13. Sobolev N.V., Kaminsky F.V., Griffin W.L., Yefimova E.S., Win T.T., Ryan C.G., Botkunov A.I. Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia // Lithos. 1997. V. 39(3-4). P. 135‒157.
  14. Deines P., Harris J.W. Sulfide inclusion chemistry and carbon isotopes of African diamonds // Geochim. Cosmochim. Acta. 1995. V. 59(15). P. 3173–3188.
  15. Farquhar J., Wing B.A., McKeegan K.D., Harris J.W., Cartigny P., Thiemens M.H. Mass-Independent Sulfur of Inclusions in Diamond and Sulfur Recycling on Early Earth. Science. 2002. (1979). V. 298 (5602). P. 2369–2372.
  16. Kitakaze A., Machida T., Komatsu R. (2016) Phase relations in the Fe–Ni–S system from 875°C to 650°C // Can. Mineral. 2016. V. 54(5). P. 1175–1186.
  17. Sinyakova E.F., Kosyakov V.I. The section of the Fe–Ni–S phase diagram constructed by directional crystallization and thermal analysis // J Therm Anal Calorim. 2013. V. 111. P. 71–76. https://doi.org/10.1007/s10973-011-2181-6
  18. Urakawa S., Someya K., Terasaki H., Katsura T., Yokoshi S., Funakoshi K., Utsumi W., Katayama Y., Sueda Y., Irifune T. Phase relationships and equations of state for FeS at high pressures temperatures and implications for the internal structure of Mars // Phys. Earth Planet. Int. 2004. V. 143(1–2). P. 469–479.
  19. Zhang Z., Hastings P., Von der Handt A., Hirschmann M.M. Experimental determination of carbon solubility in Fe-Ni-S melts // Geochim. Cosmochim. Acta. 2018. V. 225. P. 66–79.
  20. Брауэр Г. Руководство по неорганическому синтезу. М.: Мир, 1985. Т. 5. 360 c.
  21. Литвин Ю.А. Физико-химические исследования плавления глубинного вещества Земли. М.: Наука, 1991. 311 c.
  22. Бобров А.В., Литвин Ю.А. Перидотит-эклогит-карбонатитовые системы при 7.0–8.5 ГПа: концентрационный барьер нуклеации алмаза и сингенезис его силикатных и карбонатных включений // Геология и геофизика. 2009. Т. 50(12). С. 1571–1587.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Compositions of sulfide inclusions in natural diamonds in the diagram in Fe‒Ni‒S coordinates (at. %) [2, 3, 12, 14, 15]. (E) and (P) are eclogite and ultrabasic (peridotite) associations, respectively. The red dotted line marks the assumed boundaries of the compositions of monosulfide solid solutions of ultrabasic paragenesis [12, 13]

Download (40KB)
3. Fig. 2. Schematic representation of a quasi-isothermal experimental high-pressure solid-phase cell of the anvil with a hole apparatus (toroid) [21]: 1 – lithographic stone (limestone, Algeti, Georgia); 2 – insulator of the composition MgO + BN; 3 – sample; 4 – Pt70Rh30/Pt94Rh6 thermocouple in an Al2O3 holder (off–scale); 5 - graphite ampoule/heater

Download (14KB)
4. Fig. 3. Experimental results in the Fe‒Ni‒S system. (a) Fr. 936: Fe0.25Ni0.75S, T = 1300°C; (b) Fr. 950: Fe0.75Ni0.25S, T = 1500°C; (c) Fr. 922: Fe0.75Ni0.25S, T = 1400°C; (d) 939: FeS, T = 1240°C. Images in reflected electrons

Download (225KB)
5. 4. Compositions of sulfide phases obtained in the Fe‒Ni‒S system at 7 GPa and 900-1500°C. Gray circles indicate monosulfide solid solutions, red circles indicate sulfide melts: (a) the compositions of experimentally obtained sulfide phases correspond to inclusions in natural diamonds (P) and (E) – the composition regions of Mss peridotite and eclogite parageneses (see [3] and the literature listed there); (b) compositions of coexisting Mss and sulfide melts (connected by connodes). The experiment numbers correspond to the data shown in Table 3. The line marks the assumed boundaries of the field of the molten phase and solid solutions (solidus and liquidus)

Download (54KB)

Copyright (c) 2025 Russian Academy of Sciences