Spatial reorientation of a solid body using a moving mass in the presence of external forces specified as the functions of time

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The spatial motion of a mechanical system consisting of a rigid body and a moving point mass, interacting with each other by means of unspecified internal forces, has been studied. The task is to construct such a trajectory for a point mass, when moving along which a rigid body, under the influence of the force of interaction with this mass, changes its orientation in space according to a known program. It is assumed that there are external forces acting on both objects, specified as functions of time. A system of three first-order ordinary differential equations, resolved with respect to derivatives, is obtained, which allows solving the problem. These relationships can be used to control spacecraft and robotic systems.

作者简介

A. Shmatkov

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: shmatkov@ipmnet.ru
俄罗斯联邦, Moscow

参考

  1. Xu J., Fang H. Improving performance: recent progress on vibration-driven locomotion systems // Nonlinear Dyn., 2019. V. 98. N 4. P. 2651–2669.
  2. Liu Y., Chernousko F.L., Terry B.S., Chávez J.P. Special issue on self-propelled robots: from theory to applications // Meccanica. 2023. V. 58. P. 317–319.
  3. Schmoeckel F., Worn H. Remotely controllable mobile microrobots acting as nano positioners and intelligent tweezers in scanning electron microscopes (SEMs) / Proc. Intern. Conference Robotics and Automation. 2001. IEEE, N.Y. P. 3903–3913.
  4. Lampert P., Vakebtutu A., Lagrange B., De Lit P., Delchambre A. Design and performances of a one-degree-of-freedom guided nano-actuator // Robot. Comput. Integr. Manuf. 2003. V. 19. N 1/2. P. 89–98.
  5. Vartholomeos P., Papadopoulos E. Dynamics, design and simulation of a novel micro-robotic platform employing vibration microactuators // J. Dyn. Syst. Meas. Control. 2006. V. 128. N 1. P. 122–133.
  6. Gradetsky V., Solovtsov V., Kniazkov M., Rizzotto G.G., Amato P. Modular design of electromagnetic mechatronic microrobots / Proc. of 6th Intern. Conference Climbing and Walking Robots (CLAWAR). 2003. Catania, Italy. P. 651–658.
  7. Черноусько Ф.Л. О движении тела, содержащего подвижную внутреннюю массу // ДАН. 2005. Т. ٤٠٥. № ١. С. 56–60.
  8. Bolotnik N.N., Figurina T.Yu., Chernousko F.L. Optimal control of the rectilinear motion of a two-body system in a resistive medium // J. Appl. Math. Mech. 2012. V. 76. N 1. P. 1–14.
  9. Li H., Furuta K., Chernousko F.L. Motion generation of the Capsubot using internal force and static friction / Proc. 45th IEEE Conference on Decision and Control. 2006. San Diego, USA. P. 6575–6580.
  10. Zimmerman K., Zeidis I., Bolotnik N., Pivovarov M. Dynamics of a two-module vibration-driven system moving along a rough horizontal plane // Multibody Syst. Dyn. 2009. V. 22. N 2. P. 199–219.
  11. Chernousko F.L. Two-dimensional motions of a body containing internal moving masses // Meccanica. 2016. V. 51, N 12. P. 3203–3209.
  12. Черноусько Ф.Л. Оптимальное управление движением двухмассовой системы // ДАН. ٢٠١٨. Т. 480. № 5. С. 528–532.
  13. Шматков А.М. Поворот тела за кратчайшее время перемещением точечной массы // ДАН. 2018. Т. 481. № 5. С. 498–502.
  14. Bolotnik N., Figurina T. Controllabilty of a two-body crawling system on an inclined plane // Meccanica. 2023. V. 58. P. 321–336.
  15. Figurina T., Knyazkov D. Periodic regimes of motion of capsule system on rough plane // Meccanica. 2023. V. 58. P. 493–507.
  16. Chernousko F.L. Controlling the orientation of a solid using the internal mass // J. Appl. Mech. Tech. Phys. 2019. V. 60. N 2. P. 278–283.
  17. Naumov N.Yu., Chernousko F.L. Reorientation of a rigid body controlled by a movable internal mass // J. Comput. Syst. Sci. Int. 2019. V. 58. N 2. P. 252–259.
  18. Chernousko F. Reorientation of a rigid body by means of auxiliary masses // Meccanica. 2023. V. 58. P. 387–395.
  19. Shmatkov A.M. Objects changing the spatial orientation of a solid body by using mobile mass // J. Comput. Syst. Sci. Int. 2020. V. 59. N 4. P. 622–629.
  20. Белецкий В.В., Яншин А.М. Влияние аэродинамических сил на вращательное движение искусственных спутников. Киев: Наук. думка, 1984. 187 с.
  21. Shmatkov A.M. Changing the spatial orientation of a rigid body using one moving mass in the presence of external forces // Meccanica. 2023. V. 58. P. 441–450.
  22. Маркеев А.П. Теоретическая механика. М.: ЧеРо, 1999. 572 с.
  23. Журавлев В.Ф. Основы теоретической механики. М.: Физматлит, 2008. 304 с.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024