Ударопрочность эпоксидных композитов пониженной горючести с наночастицами органобентонита

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Впервые установлен максимальный синергетический эффект снижения горючести эпоксидной смолы по кислородному индексу с использованием нестехиометрической смеси меламина и гидрофосфата аммония. Синергетика смеси обусловлена образованием термостойких керамоподобных структур в результате термодеструкции компонентов. В настоящей работе впервые установлен эффект увеличения стойкости до (80 ± 10)% к импульсным нагрузкам с последующим быстрым разрушением (реологический взрыв) для полимерного композита на основе отвержденной эпоксидной смолы с 20%-м содержанием фосфор-азотсодержащих антипиренов (P,N-антипиренов) за счет введения 0.5–1.5% наночастиц органобентонита. Впервые зафиксировано, что импульсы электрического тока, возникающие при сверхбыстром разрушении композита без наночастиц органобентонита, отличаются по частотным характеристикам от композита с введенными наночастицами органобентонита. Для композита без наночастиц органобентонита фиксируется одна полоса радиочастотного излучения с максимумом при 2.4 МГц, а для композита с введенными наночастицами органобентонита – полосы радиочастотного излучения с максимумами при 2.4, 20.9 и 25.3 МГц. Предложен вероятный механизм наблюдаемого эффекта.

Полный текст

Доступ закрыт

Об авторах

Ю. М. Евтушенко

Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН

Email: sh.toirov@ispm.ru
Россия, 117393 Москва

С. Х. Тоиров

Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН

Автор, ответственный за переписку.
Email: sh.toirov@ispm.ru
Россия, 117393 Москва

А. И. Александров

Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН

Email: sh.toirov@ispm.ru
Россия, 117393 Москва

В. Г. Шевченко

Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН

Email: sh.toirov@ispm.ru
Россия, 117393 Москва

Список литературы

  1. Zhi M., Yang X., Fan R., Yue S., Zheng L., Liu Q., He Y. // Polym. Degrad. Stab. 2022. V. 201. 109976. https://doi.org/10.1016/j.polymdegradstab.2022.109976
  2. Kamalipour J., Beheshty M.H., Zohuriaan-Mehr M.J. // Iran J. Polym Sci. 2021. V. 34. P. 3–27. https://doi.org/10.22063/jipst.2021.1790
  3. Zaghioul M.M.Y., Zaghioul M.M.Y., Fuseini M. // Polym. Adv. Technol. 2023. V. 34. № 11. P. 3438–3472. https://doi.org/10.1002/pat.6144
  4. Ткачук А.И., Терехов И.В., Афанасьева Е.А. // Труды ВИАМ: электрон. науч.-техн. журн. 2020. № 3 (87). https://doi.org/10.18577/2307-6046-2020-0-3-41-48
  5. Ткачук А.И., Афанасьева Е.А. // Труды ВИАМ: электрон. науч.-техн. журн. 2020. № 4–5 (88). https://doi.org/10.18577/2307-6046-2020-0-45-13-21
  6. Bifulco A., Vargnici C.-D., Rosu L., Mustata F., Rosu D., Gaan S. // Polym. Degrad. Stab. 2022. V. 200. 109962. https://doi.org/10.1016/j.polymdegradstab.2022.109962
  7. Барботько С.Л., Вольный О.С., Боченков М.М., Коробейничев О.П., Шмаков А.Г., Тужиков О.О., Буравов Б.А., Аль-Хамзави А., Тужиков О.И., Соснин Е.А., Палецкий А.А., Чернов А.А., Сагитов А.Р., Куликов И.В., Карпов Е.В., Трубачев С.А. // Химическая физика и мезоскопия. 2024. Т. 26. № 1. С. 69–84. https://doi.org/10.62669/17270227.2024.1.7
  8. Evtushenko Yu.M., Goncharuk G.P., Grigoriev Yu.A., Kuchkina I.O., Shevchenko V.G. // Inorg. Mater. Appl. Res. 2021. V. 11. № 5. P. 65–75. http://dx.doi.org/10.30791/1028-978X-2021-5-65-75
  9. Evtushenko Yu.M., Grigoriev Yu.A., Rudakova T.A., Ozerin A.N. // J. Coat. Techn. Res. 2019. V. 16. № 5. P. 1389–1398. https://doi.org/10.1007/s11998-019-00221-6
  10. Александров А.И., Александров И.А., Прокофьев А.И. // Письма в ЖЭТФ. 2013. Т. 97. № 9–10. С. 630–633. https://doi.org/10.7868/S0370274X13090105
  11. Александров А.И., Шевченко В.Г., Александров И.А. // Письма в ЖТФ. 2020. Т. 46. № 7. С. 43–47. https://doi.org/10.21883/PJTF.2020.07.49220.18119
  12. Broadband dielectric spectroscopy. Kremer F., Schonhals A. (Eds.). New York: Springer International Publishing, 2003. 739 p.
  13. Havriliak S., Negami S.A. // Polymer. 1967. V. 8. P. 161–216. https://doi.org/10.1016/0032-3861(67)90021-3
  14. Gade S., Weiss U., Peter M., Sause M. // J. Nondestr. Eval. 2014. V. 33. № 4. P. 711–723. https://doi.org/10.1007/s10921-014-0265-5
  15. Dickinson J., Jensen L., Jahan-Latibari A. // J. Mater. Sci. 1984. V. 19. № 5. P. 1510–1516. https://doi.org/10.1007/BF00563046

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Зависимость кислородного индекса композитов от содержания ДАГФ в антипирене (разброс данных не превышает 5%).

Скачать (81KB)
3. Рис. 2. Зависимость давления реологического взрыва PRV от количества введенного органобентонита (каждой точке соответствует пять идентичных экспериментов, разброс данных не превышает 10%).

Скачать (81KB)
4. Рис. 3. Фурье-образы импульсов тока (огибающие кривые) и их спектральный состав, полученный на основе формулы Гаврилиака–Негами для полимерного композита (2.4 MГц) и для композита НОБ (2.4, 20.9, 25.3 MГц). Зеленая и красная штриховые линии – аппроксимация по формуле Гаврилиака–Негами.

Скачать (181KB)
5. Рис. 4. Распределение времен диэлектрической релаксации g(τ) от log(τ) для функций Гаврилиака–Негами, соответствующих пикам при 2.4, 20.9, 25.3 MГц (см. штриховые линии на рис. 3).

Скачать (152KB)

© Российская академия наук, 2025