THE COUNTABLE SPECTRUM OF WEAKLY O-MINIMAL THEORIES OF FINITE CONVEXITY RANK
- Authors: Kulpeshov B.S.1,2
-
Affiliations:
- Institute of Mathematics and Mathematical Modeling
- Kazakh-British Technical University
- Issue: Vol 520, No 1 (2024)
- Pages: 43-53
- Section: MATHEMATICS
- URL: https://medjrf.com/2686-9543/article/view/682689
- DOI: https://doi.org/10.31857/S2686954324060072
- EDN: https://elibrary.ru/KKVYCJ
- ID: 682689
Cite item
Abstract
Here we present a formula counting the countable spectrum of an arbitrary weakly o-minimal theory of finite convexity rank having less than 2ω pairwise non-isomorphic countable models.
About the authors
B. Sh Kulpeshov
Institute of Mathematics and Mathematical Modeling; Kazakh-British Technical University
Email: b.kulpeshov@kbtu.kz
Almaty, Kazakhstan; Almaty, Kazakhstan
References
- Macpherson H. D., Marker D., Steinhorn C. Weakly o-minimal structures and real closed fields // Transactions of the American Mathematical Society. 2000. V. 352. № 12. Р. 5435–5483.
- Baizhanov B. S. Expansion of a model of a weakly o-minimal theory by a family of unary predicates // The Journal of Symbolic Logic. 2001. V. 66. № З. P. 1382–1414.
- Kulpeshov B. Sh. Weakly o-minimal structures and some of their properties // The Journal of Symbolic Logic. 1998. № 63. P. 1511–1528.
- Кулпешов Б. Ш. Критерий бинарности почти ωкатегоричных слабо о-минимальных теорий // Сибирский математический журнал. 2021. Т. 62. № 6. С. 1313–1329.
- Кулпешов Б. Ш. Гипотеза Воота для слабо оминимальных теорий конечного ранга выпуклости // Известия РАН, серия математическая. 2020. Т. 84. № 2. С. 126–151.
- Ikeda K., Pillay A., Tsuboi A. On theories having three countable models // Mathematical Logic Quarterly. 1998. V. 44. № 2. P. 161–166.
- Судоплатов С. В. Классификация счетных моделей полных теорий, НГТУ, Новосибирск, части 1 и 2, 2018.
- Altayeva A. B., Kulpeshov B. Sh. On almost omegacategoricity of weakly o-minimal theories // Siberian Electronic Mathematical Reports. 2021. V. 18. № 1. P. 247–254.
- Mayer L. L. Vaught’s conjecture for o-minimal theories // The Journal of Symbolic Logic. 1988. V. 53. P. 146–159.
- Kulpeshov B. Sh., Sudoplatov S. V. Vaught’s conjecture for quite o-minimal theories // Annals of Pure and Applied Logic. 2017. V. 168. № 1. P. 129–149.
- Alibek A., Baizhanov B. S., Kulpeshov B. Sh., Zambarnaya T. S. Vaught’s conjecture for weakly o-minimal theories of convexity rank 1 // Annals of Pure and Applied Logic. 2018. V. 169. № 11. P. 1190–1209.
- Замбарная Т. С., Байжанов Б. С. Счетные модели полных упорядоченных теорий // Доклады Российской академии наук. Математика, информатика, процессы управления. 2023. Т. 513. С. 5–8.
- Baizhanov B., Umbetbayev O. Constant expansion of theories and the number of countable models // Siberian Electronic Mathematical Reports. 2023. V. 20. № 2. P. 1037–1051.
- Dauletiyarova A. B., Verbovskiy V. V. On the number of countable models of constant and unary predicates expansions of the dense meettree theory // Siberian Electronic Mathematical Reports. 2024. V. 21. № 2. P. 755–770.
- Kulpeshov B. Sh. Criterion for binarity of ℵ0categorical weakly o-minimal theories // Annals of Pure and Applied Logic. 2007. V. 45. P. 354–367.
- Kulpeshov B. Sh., Sudoplatov S. V. Almost quite orthogonality of 1-types in weakly o-minimal theories // Logic Colloquium 2023, European Summer Meeting of ASL, University of Milan, Italy, 5–9 June 2023, book of abstracts, p. 128.
- Kulpeshov B. Sh., Sudoplatov S. V. On new variant of orthogonality of 1-types in weakly o-minimal theories, preprint, 2022.
- Baizhanov B. S. Orthogonality of one-types in weakly o-minimal theories // Algebra and Model Theory II, (A. G. Pinus and K. N. Ponomaryov, editors), Novosibirsk State Technical University. 1999. P. 3–28.
- Baizhanov B. S., Kulpeshov B. Sh. On behaviour of 2-formulas in weakly o-minimal theories // Mathematical Logic in Asia, Proceedings of the 9th Asian Logic Conference (editors S. Goncharov, R. Downey, H. Ono), Singapore, World Scientific. 2006. P. 31–40.
Supplementary files
