ON A TOPOLOGICAL STRUCTURE OF A SOLUTION SET TO A CAUCHY PROBLEM FOR FRACTIONAL DIFFERENTIAL INCLUSIONS WITH A UPPER SEMICONTINUOUS RIGHT-HAND SIDE
- Autores: Petrosyan G.G.1
-
Afiliações:
- Voronezh State Pedagogical University
- Edição: Volume 522, Nº 1 (2025)
- Páginas: 33-39
- Seção: MATHEMATICS
- URL: https://medjrf.com/2686-9543/article/view/683772
- DOI: https://doi.org/10.31857/S2686954325020064
- EDN: https://elibrary.ru/HZAENQ
- ID: 683772
Citar
Resumo
In this paper, we study the topological structure of a solution set to the Cauchy problem for semilinear differential inclusions of fractional order α ∈ (1, 2) in Banach spaces. It is assumed that the linear part of the inclusions is a linear closed operator generating a strongly continuous and uniformly bounded family of cosine operator functions. The nonlinear part is represented by a upper semicontinuous multivalued operator of Caratheodory type. It is established that the set of solutions to the problem is an Rδ-set.
Sobre autores
G. Petrosyan
Voronezh State Pedagogical University
Email: garikpetrosyan@yandex.ru
Voronezh, Russia
Bibliografia
- Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations. Amsterdam: Elsevier Science B.V., North-Holland Mathematics Studies, 2006.
- Podlubny I. Fractional differential equations. San Diego: Academic Press, 1999.
- Обуховский В.В., Петросян Г.Г., Сорока М.С. О начальной задаче для невыпуклозначных дифференциальных включений дробного порядка в банаховом пространстве // Математические заметки. 2024. Т. 115. № 3. 392–407.
- Петросян Г.Г. О краевой задаче для класса дифференциальных уравнений дробного порядка типа Ланжевена в банаховом пространстве // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. 2022. Т. 32. № 3. 415–432.
- Benedetti I., Obukhovskii V., Taddei V. On generalized boundary value problems for a class of fractional differential inclusions // Fract. Calc. Appl. Anal. 2017. V. 20. 1424–1446.
- Гомоюнов М.И. К теории дифференциальных включений с дробными производными Капуто // Дифференциальные уравнения. 2020. Т. 56. № 11. 1419–1432.
- Ke T.D., Obukhovskii V., Wong N.C., Yao J.C. On a class of fractional order differential inclusions with infinite delays // Applicable Anal. 2013. V. 92. 115–137.
- Kamenskii M.I., Obukhoskii V.V., Petrosyan G.G., Yao J.C. Boundary value problems for semilinear differential inclusions of fractional order in a Banach space // Applicable Analysis. 2017. V. 97. № 4. 571–591.
- Aronszajn N. Le correspondant topologique de l’unicite dans la theorie des equations differentielles // Annals of mathematics, second series. 1942. V. 43. № 4. 730–738. [in French]
- Go´rniewicz L. On the solution sets of differential inclusions // J. Math. Anal. and Appl. 1986. V. 113. № 1. 235–244.
- Филиппов В.В. О теореме Ароншайна // Дифференциальные уравнения. 1997. Т. 33. № 1. 75–79.
- Go´rniewicz L. Topological Fixed Point Theory of Multivalued Mappings, Second edition. Topological Fixed Point Theory and Its Applications. Dordrecht: Springer, 2006.
- Djebali S., Go´rniewicz L., Ouahab A. Solution Sets for Differential Equations and Inclusions. De Gruyter Series in Nonlinear Analysis and Applications, 18. Berlin: Walter de Gruyter, 2013.
- Kamenskii M., Obukhovskii V., Zecca P. Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. Berlin–New-York: Walter de Gruyter, 2001.
- Kamenskii M.I., Obukhoskii V.V., Petrosyan G.G. A continuous dependence of a solution set for fractional differential inclusions of an order q ∈ (1, 2) on parameters and initial data // Lobachevskii Journal of Mathematics. 2023. V. 44. № 8. 3331–3342.
- Sova M. Cosine operator functions. Rozprawy Mat. 49, 1966.
- Борисович Ю.Г., Гельман Б.Д., Мышкис А.Д., Обуховский В.В. Введение в теорию многоначных отображений и дифференциальных включений. М.: Книжный дом „Либроком“, 2011.
- Hyman D.H. On decreasing sequences of compact absolute retracts // Fund. Math. 1969. V. 64. 91–97.
- Zhou Y., Jiao F. Existence of mild solutions for fractional neutral evolution equations // Comput. Math. Appl. 2010. V. 59. 1063–1077.
Arquivos suplementares
