OPERATOR GROUP GENERATED BY A ONE-DIMENSIONAL DIRAC SYSTEM

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, we construct a strongly continuous operator group generated by a one-dimensional Dirac operator acting in the space \(\mathbb{H} = {{\left( {{{L}_{2}}[0,\pi ]} \right)}^{2}}\). The potential is assumed to be summable. It is proved that this group is well-defined in the space \(\mathbb{H}\) and in the Sobolev spaces \(\mathbb{H}_{U}^{\theta }\), \(\theta > 0\), with fractional index of smoothness \(\theta \) and under boundary conditions \(U\). Similar results are proved in the spaces \({{\left( {{{L}_{\mu }}[0,\pi ]} \right)}^{2}}\), \(\mu \in (1,\infty )\). In addition we obtain estimates for the growth of the group as \(t \to \infty \).

Sobre autores

A. Savchuk

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: savchuk@cosmos.msu.ru
Russian Federation, Moscow

I. Sadovnichaya

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: ivsad@yandex.ru
Russian Federation, Moscow

Bibliografia

  1. Шкаликов А.А. // УМН. 1979. Т. 34. № 5(209). С. 235–236.
  2. Savchuk A.M., Shkalikov A.A. // Math. Notes. 2014. V. 96 № 5. P. 777–810.
  3. Гомилко А.M. // Функц. анализ и его прил. 1999. Т. 33 № 4. С. 66–69.
  4. Albeverio S., Hryniv R., Mykytyuk Ya. // Russian J. Math. Phys. 2005. V. 12. № 4. P. 406–42.
  5. Баскаков А.Г., Дербушев А.В., Щербаков А.О. // Изв. РАН. Сер. матем. 2011. Т. 75. № 3. С. 3–28.
  6. Djakov P., Mityagin B. // Proc. Amer. Math. Soc. 2013. V. 141. № 4. P. 1361–1375.
  7. Beigl A., Eckhardt J., Kostenko A., Teschl G. // J. Math. Phys. 2015. V. 56, 012102.
  8. Djakov P., Mityagin B. // Russ. Math. Surv. 2020. V. 75. № 4. P. 587–626.
  9. Савчук А.М., Садовничая И.В. // Совр. мат-ка. Фунд. напр-я. 2020. Т. 66. № 3. С. 373–530.
  10. Лунев А.А., Маламуд М.М. // Зап. научн. сем. ПОМ-И. 2022. Т. 516. С. 69–120.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © А.М. Савчук, И.В. Садовничая, 2023