About tautochronic movements

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is shown that a material point, under the influence of an attractive linear force and a repulsive force inversely proportional to the cube of the distance from the center of attraction, performs a periodic motion, the period of which does not depend on the initial data (tautochronic motion). The problem is reduced to a nonlinear autonomous second-order equation, the general solution of which is expressed in terms of elementary functions. It has also been proven that for other power laws of repulsive force, except for degrees 0, 1 and –3, the movement of a material point is not tautochronous.

作者简介

A. Petrov

Ishlinsky Institute of Mechanics Problems of RAS

编辑信件的主要联系方式.
Email: petrovipmech@gmail.com
俄罗斯联邦, Moscow

参考

  1. Аппель P. Теоретическая механика. Т. 1. Физ. мат. лит. М., 1960 / Appel P. Traité de mécanique rationnelle – Tome premier statique-dynamique du point 1902.
  2. Ландау Л.Д., Лифшиц Е.М. Механика. Физ. мат. лит. М., 1965
  3. Osypowski E.T., Olsson M.G. Isynchronous motion in classical mechanics // Am.J. Phys. 1987. V. 55. P. 720–725.
  4. Chalykh O.A., Veselov A.P. A Remark on Rational Isochronous Potentials Journal of Nonlinear Mathematical Physics Volume 12, Supplement 1. 2005. P. 179–183.
  5. Буданов В.М. Об одной изохронной нелинейной системе. // Вестн. моск. ун-та. сер.1, математика. механика. 2013. № 6. С. 59–63. / V.M. Budanov, On a nonlinear isochronous system. Moscow Univ. Mech. Bull. 68, (2013).
  6. Биркгоф Д.Д. Динамические системы. Ижевск; Издательский дом “Удмуртский университет”, 1999, 408 с. / Birkhoff D. Dynamical Systems. Publisher, Edwards, 1927
  7. Журавлев В.Ф. Основы теоретической механики. М.: ФИЗМАТЛИТ, 2008. 304 с./ Zhuravlev V.F. Fundamentals of Theoretical Mechanics. М.: FIZMATLIT, 2008. 304 с. (in Russian)
  8. Журавлев В.Ф. Инвариантная нормализация неавтономных гамильтоновых систем. // ПММ, 2002. Т. 66. Вып. 3. С. 356–365. / Zhuravlev V. Ph. Invariant normalization of non-autonomous Hamiltonian systems J. Applied Mathematics and Mechanics. 2004. V. 66. № 3. P. 356–365

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024