Loessoids and other indications of the northern periglaciation1

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This is a review of research in the structure of the Late Pleistocene periglacial zone of northern formerly glaciated Russia obtained during the last 40 years. The discussion concerns sediments and landforms of flatlands formed in the last 60 ka after the disintegration of regional ice sheets of the early Late Pleistocene. A special emphasis is on poorly studied phenomena of subaerial sedimentation which in the north before 1990-s, unlike in southern Russia, was commonly disregarded in geological and geographical papers in favour of glacial and aqueous processes. However, presently a wide distribution of subaerial sediments including dune sand, niveo-aeolian sand and various loess-like silts is established. Monotonous silty formations are now mapped as associations of different subaerial sediments called `loessoids`. This term embraces equally the classical steppe loess, loess-like silts of the forest zone and icy aeolian silts of the yedoma type. Together with these indications of harsh continental climate in the northern periglacial environment related products of permafrost development such as ice wedges, solifluction sheets, sandy hillocks formed by topographic inversion of thermokarst sinkholes are considered. Also in this context the specific alluvium and cryoarid biota characteristic for the continental climate аre discussed. The obtained results do not support the popular reconstructions of forested landscapes of the modern type for the MIS3 interval. According to the new results jointly with the reinterpreted old data, treeless and forest-tundra landscapes are inferred for this time. This allows to consider the periglaciation of northern Russias a counterpart of the Central European Pleniglacial.

Sobre autores

V. Astakhov

Saint-Petersburg University; VSEGEI; Institute of Geography RAS

Autor responsável pela correspondência
Email: val-asta@yandex.ru
Rússia, Saint-Petersburg; Saint-Petersburg; Moscow

Bibliografia

  1. Arkhipov S. A., Astakhov V. I., Volkov I. A. (1980). Paleogeografia Zapadno-Sibirskoi ravniny v maksimum pozdnezyryanskogo oledeneniya (Paleogeography of West-SiЬеriап Plаiп аt the late Zуrуапkа glасiаtiоп maximum). Novosibirsk: Nauka (Publ.). 103 p. (in Russ.)
  2. Arslanov Kh.A., Laukhin S. A., Maksimov F. E. (2009). Radiocarbon chronology and landscapes of Western Siberian Lipovsk-Novoselovsky interstadial (on evidence of study section near v. Lipovka). In: Materialy VI Vserossiiskogo zasedaniya po izucheniyu chetvertogo perioda. Novosibirsk: Siberian Branch RAS (Publ.). P. 44—46. (in Russ)
  3. Astakhov V. (1995). The mode of degradation of Pleistocene permafrost in West Siberia. Quat. Int. V. 28. P. 119—121. https://doi.org/10.1016/1040-6182(95)00034-G
  4. Astakhov V. (2014). The postglacial Pleistocene of the northern Russian mainland. Quat. Sci. Rev. V. 92. P. 388—408. https://doi.org/10.1016/j.quascirev.2014.03.009
  5. Astakhov V., Mangerud J. (2007). The geochronometric age of Late Pleistocene terraces on the Lower Yenisei. Dokl. Earth Sci. V. 416 (7). P. 1022—1026.
  6. https://doi.org/10.1134/S1028334X07070094
  7. Astakhov V., Pestova L., Shkatova V. (2022). Loessoids of Russia: varieties and distribution. Regionalnaya Geologia i Metallogenia. № 87. P. 42—60. https://doi.org/10.52349/0869-7892_2021_87_42-60
  8. Astakhov V. I. (1989). Late Pleistocene sedimentary environments in the centre of West Siberia. Trudy Instituta geologii i geofiziki SO AN SSSR. Iss. 657. P. 118—126. (in Russ.)
  9. Astakhov V. I. (1991). The fluvial history of West Siberia. In: Temperate paleohydrology. London: Wiley. P. 381—392.
  10. Astakhov V. I. (1992). The last glaciation in West Siberia. In: Sveriges Geologiska Undersökning. Ser. Ca 81. Uppsala. P. 21—30.
  11. Astakhov V. I. (1998). Inversion relief as indicator of paleocryological environments. Geomorfologiya. № 4. P. 40—47. (in Russ.)
  12. Astakhov V. I. (2006). Evidence of Late Pleistocene ice-dammed lakes in West Siberia. Boreas. V. 35. Iss. 4. P. 607—621. https://doi.org/10.1080/03009480600690845
  13. Astakhov V. I., Svendsen J. I. (2011). The cover formation of the final Pleistocene in the far Northeast of European Russia. Regionalnaya Geologia i Metallogenia. № 47. P. 12—27. (in Russ.)
  14. Bolikhovsky V. F. (1987). The Yedoma sediments in West Siberia. In: Novye dannye po geokhronologii chetvertichnogo perioda. Moscow: Nauka (Publ.). P. 128—136. (in Russ.)
  15. Butakov G. P. (1986). Pleistotsenovyi periglatsial na vostoke Russkoi ravniny (The Pleistocene periglacial in the eastern Russian Plain). Kazan: Kazan University (Publ.). 144 p. (in Russ.)
  16. Fedorovich B. A. (1960). Issues of loess origin as related to its distribution in Eurasia. Trudy Instituta geografii AN SSSR. Iss. 80. P. 96—117. (in Russ.)
  17. Galanin А. А. (2021). Late Quaternary sand covers of Central Yakutia (East Siberia): structure, facies and palaeoecological significance. Kriosfera Zemli. Iss. XXV. № 1. P. 3—34. (in Russ.). https://doi.org/10.15372/KZ20210101
  18. Gerasimov I. P., Velichko A. A. (Eds.). (1982). Paleogeografia Evropy za poslednie sto tysyach let. Atlas-monografia (Palaeogeography of Europe in the last one hundred thousand years. Atlas-monograph). Moscow: Nauka (Publ.). 156 p. 15 maps. (in Russ.)
  19. Gubin S. V. (2002). Pedogenesis is an integral part of the mechanism of formation of sediments of the late Pleistocene ice complex. Kriosfera Zemli. V. VI. № 3. P. 82—91. (in Russ.)
  20. Halvorsen L. S. (2000). Palaeovegetation and environment during Weichselian stadials and interstadials at Mamontovaya Kurja and Sokolova in the Pechora basin, northern Russia. Cand. Scient. thesis. Bergen: University of Bergen. 68 p.
  21. Heggen H. P., Svendsen J. I., Mangerud J., Lohne Ø. S. (2012). A new palaeoenvironmental model for the evolution of the Byzovaya Palaeolithic site, northern Russia. Boreas. V. 41. P. 527—545.
  22. https://doi.org/10.1111/j.1502-3885.2012.00259.x
  23. Henriksen M., Mangerud J., Matiouchkov A. et al. (2008). Intriguing climatic shifts in a 90 kyr old lake record from northern Russia. Boreas. V. 37. P. 20—37. https://doi.org/10.1111/j.1502-3885.2007.00007.x
  24. Huijzer B., Vandenberghe J. (1998). Climatic reconstruction of the Weichselian Pleniglacial in northwestern and Central Europe. J. of Quat. Sci. V. 13. № 5. P. 391—417.
  25. Kaplyanskaya F. A., Tarnogradsky V. D. (1974). Srednyi i nizhnyi pleistotsen nizovyi Irtysha (The Middle and Lower Pleistocene of the Lower Irtysh Area). Leningrad: Nedra (Publ.). 160 p. (in Russ.)
  26. Kasse C. (1997). Cold-climate aeolian sand-sheet formation in north-western Europe (c.14—12.4 ka): a response to permafrost degradation and increased aridity. Permafrost and Periglacial Processes. V. 8. Iss. 3. P. 295—311.
  27. Kes A. S. (1966). Zonal and fossil loess analogues. In: Strukturnaya i klimaticheskaya geomorfologiya. Moscow: Nauka (Publ.). p. 145—153. (in Russ.)
  28. Kind N. V. (1974). Geokhronologia pozdnego antropogena po izotopnym dannym (Late Quaternary Geochronology According to Isotope Data). Moscow: Nauka (Publ.). 255 p. (in Russ.)
  29. Kolpakov V. V. (1983). Aeolian Quaternary deposits of Lena Yakutia. Bulletenʹ Komissii po izucheniyu chetvertichnogo perioda. № 52. P. 123—131. (in Russ.)
  30. Konishchev V. N., Lubimov B. N. (1968). Ancient aeolian landforms in Bolshezemelskaya Tundra. Vestnik Moskovskogo Universiteta. Seriya 5. Geografiya. № 2. P. 96—99. (in Russ.).
  31. Koster E. A. (1988). Ancient and modern cold-climate aeolian sand deposition: a review. J. of Quat. Sci. V. 3. Iss. 1. P. 69—83.
  32. Krasnov I. I. (Ed.). (1971). Karta chetvertichnykh otlozhenii Evropeiskoi chasti SSSR i prilegayushchikh teritorii masshtaba 1:1500000 (Quaternary map of European USSR and adjacent lands, scale 1:1500000). Leningrad: VSEGEI (Publ.). 16 p.
  33. Kriger N. I. (1965). Loess, ego svoistva i svyazʹ s geograficheskoi sredoi (Loess, its properties and relations with environments). Moscow: Nauka (Publ.). 296 p. (in Russ.)
  34. Laukhin S. A., Maksimov F. Ye., Arslanov Kh.A. et al. (2008). The geochronology and landscape-climatic conditions of the Early Zyryanka interstadial of West Siberia. Doklady akademii nauk. Iss. 420. № 5. P. 683—686. (in Russ.)
  35. Laukhin S. A., Shilova G. N., Velichkevich F. Yu. (2006). Palaeobotanic characteristics and palaeoclimates of the Karginsky time in the West Siberian Plain. Vestnik Arkheologii, Antropologii i Etnografii. № 7. P. 203—225. (in Russ.)
  36. Lavrov A. S., Potapenko L. M. (2005). Neopleistotsen severo-vostoka Russkoi ravniny (The Neopleistocene of the northeastern Russian Plain). Мoscow: Aerogeologia (Publ.). 222 p. (in Russ.)
  37. Mangerud J., Svendsen J. I., Astakhov V. I. (1999). Age and extent of the Barents and Kara Sea ice sheets in Northern Russia. Boreas. V. 28. Iss. 1. P. 46—80.
  38. Markova A. K., Simakova A. N., Puzachenko A.Yu. (2002). Environments of the Russian Plain during the Middle Valdai Briansk Interstade (33,000—24,000 BP) indicated by the fossil mammals and plants. Quat. Res. V. 57. Iss. 3. С. 391—400. https://doi.org/10.1006/qres.2002.2336
  39. Minina Ye.A., Starchenko V. V. (Eds.). (2005). Metodicheskoe posobie po sostavleniyu melkomasshtabnykh kart chetvertchnykh obrazovanii k Gosgeolkarte-1000/3 (Manual on composition of small-scale Quaternary maps for National Geological Map of 3d generation, scale 1 : 1 000000). St-Petersburg: VSEGEI (Publ.). 190 p. (in Russ.)
  40. Murton J. B., Goslar T., Edwards M. E. et al. (2015). Palaeoenvironmental interpretation of yedoma silt (Ice Complex) deposition as cold-climate loess, Duvanny Yar, northeast Siberia. Permafrost and Periglacial Processes. V. 26. Iss. 3. P. 208—288. https://doi.org/10.1002/ppp.1843
  41. Nikolskaya O.A. (2006). Pozdnepleistotsenovaya istoriya gidrograficheskoi seti severa Pechorskogo basseina (Late Pleistocene history of hydrographic network of the northern Pechora basin). PhD thesis. St. Petersburg: SPbU. 156 p. (in Russ.).
  42. Panin A. V., Astakhov V. I., Lotsari E. et al. (2020). Middle and Late Quaternary glacial lake-outburst floods, drainage diversions and reorganization of fluvial systems in northwestern Eurasia. Earth-Sci. Rev. V. 201. 103069. https://doi.org/10.1016/j.earscirev.2019.103069
  43. Péwé T., Journaux A. (1983). Origin and character of loesslike silt in unglaciated south-central Yakutia, Siberia. In: Geol. Surv. Prof. Pap. 1262. Washington: U.S. G.P.O. 46 p. https://doi.org/10.3133/pp1262
  44. Reineck H.-E., Singh I. B. (1980). Depositional Sedimentary Environments, with reference to terrigenous clastics. Springer-Verlag. 551 p.
  45. Schwan J. (1986). The origin of horizontally alternating bedding in Weichselian aeolian sands in northwestern Europe. Sediment. Geol. V. 49. Iss. 1—2. P. 73—108. https://doi.org/10.1016/0037-0738(86)90016-3
  46. Sergeyev Ye.M. (Ed.). (1986). Loessovye porody SSSR (Loessic rocks of the USSR). Moscow: Nedra (Publ.). Iss. 2. 232+278 p. (in Russ.).
  47. Shennan I. (2007). Sea level studies. In: Encyclopedia of Quat. Sci. V. 4. [S. l.]: Elsevier. P. 2967—2974.
  48. Shvetsov A. Ya. (2021). Loessy Altaya (Loesses of the Altai). Barnaul: Novyi Format (Publ.). 152 p. (in Russ.)
  49. Sidorchuk A. Yu., Panin A. V., Borisova O.K. (2008). Climate-induced changes in surface runoff on the North-Eurasian plains during the Late Glacial and Holocene. Water Resources. Iss. 35. № 4. P. 406—416. (in Russ.)
  50. Svendsen J. I., Pavlov P. (2003). Mamontovaya Kuya: an enigmatic, nearly 40000 years old Paleolithic site in the Russian Arctic. The chronology of the Aurignacian and of the transitional technocomplexes. Trabalhos de Arqueologia. V. 33. P. 109—120.
  51. Svendsen J. I., Pavlov P., Heggen H. et al. (2008). Pleistocene environment and Palaeolithic sites in the north of the western Urals. In: Put’ na Sever: okruzhayushchaya sreda i samye rannie obitateli Arktiki i Subarktiki. Moscow: Institute of Geography RAS (Publ.). P. 79—97. (in Russ.)
  52. Teruggi M. E. (1957). The nature and origin of Argentine loess. J. Sediment. Petrol. V. 27. № 3. P. 322—323.
  53. Tomirdiaro S. V. (1980). Loessovo-ledovaya formatsia Vostochnoi Sibiri v pozdniem pleistotsene (The loess-ice formation of East Siberia in the Late Pleistocene). Moscow: Nauka (Publ.). 184 p. (in Russ.)
  54. Vangengeim E. A., Pevzner M. A., Tesakov A. S. (2001). Mammalian zonation of the Eastern European Quaternary. Stratigrafia. Geologicheskaya Korrelatsia. Iss. 9. № 3. P. 76—88. (in Russ.)
  55. Vasilchuk Yu.K., Vasilchuk A. C. (1998). ¹⁴C and 18O in Siberian syngenetic ice-wedge complexes. Radiocarbon. V. 40. Iss. 2. P. 883—893. https://doi.org/10.1017/S0033822200018853
  56. Vasiliev Yu.M. (1980). Otlozhenia periglatsialʹnoi zony Vostochnoi Evropy (Deposits of the periglacial zone of Eastern Europe). Мoscow: Nauka (Publ.). 172 p. (in Russ.)
  57. Velichkevich F. Yu. (1982). Pleistotsenvye flory lednikovykh oblastei Vostochno-Evropeiskoi ravniny (Pleistocene floras of the glaciated East European Plain). Minsk: Nauka i Tekhnika (Publ.). 239 p. (in Russ.)
  58. Velichko A. A. (1973). Prirodnyi protsess v pleistotsene (The Natural Process in Pleistocene). Moscow: Nauka (Publ.). 256 p. (in Russ.)
  59. Velichko A. A. (Ed.). (2002). Dinamika landshaftnykh komponentov i vnutrennikh basseinov Severnoi Evrazii za poslednie 130 000 let. Atlas-monografia. Vyp. II. (Dynamics of terrestrial landscape components and inland and marginal seas of Northern Eurasia during the last 130 000 years. Atlas-monograph. Issue II). Moscow: GEOS (Publ.). 296 p. (in Russ.)
  60. Velichko A. A., Gribchenko Yu.N., Gubonina Z. P. et al. (1997). General peculiarities of the loess-soil formation. In: Loessovo-pochvennaya formatsiya Vostochno-Evropeiskoi ravniny. Мoscow: Institute of Geography RAS (Publ.). P. 5—25 (in Russ.)
  61. Velichko A. A., Morozova T. D., Nechaev V. P. et al. (2006). Loess/paleosol/cryogenic formation and structure near the northern limit of loess deposition, East European Plain, Russia. Quat. Int. V. 152—153. P. 4—30. https://doi.org/10.1016/j.quaint.2005.12.003
  62. Velichko A. A., Timireva S. N., Kremenetsky K. V. (2007). West Siberian Plain as a late glacial desert. Izvestiya RAN. Seriya geograficheskaya. № 4. С. 16—28. (in Russ.)
  63. Velichko A. A., Zelikson E. M. (2005). Landscape, climate and mammoth food resources in the East European Plain during the late Paleolithic epoch. Quat. Int. V. 126—128. P. 137—151. https://doi.org/10.1016/j.quaint.2004.04.019
  64. Volkov I. A. (1971). Pozdnechetvertichnaya subaeralʹnaya formatsiya (Late Quaternary Subaerial Sedimentary Association). Мoscow: Nauka (Publ.). 254 p. (in Russ.)
  65. Yershov E. D. (Ed.). (1988). Geokriologia SSSR. Evropeiskaya chastʹ (Geocryology of the USSR. European part). Moscow: Nedra (Publ.). 358 p. (in Russ.)
  66. Zarrina E. P., Kaplyanskaya F. A., Krasnov I. I. et al. (1961). The periglacial sediments of the West Siberian Lowland. In: Materialy po chetvertichnoi geologii i geomorfologii SSSR. Moscow: Gosgeoltekhizdat (Publ.). P. 54—104. (in Russ.)
  67. Zeeberg J. J. (1998). The European sand belt in eastern Europe — and comparison of Late Glacial dune orientation with GCM simulation results. Boreas. V. 27. Iss. 2. P. 127—139. https://doi.org/10.1111/j.1502-3885.1998.tb00873.x
  68. Zemtsov A. A. (1976). Geomorfologiya Zapadno-Sibirskoi ravniny (Geomorphology of the West Siberian Plain). Tomsk: Tomsk University (Publ.). 343 p. (in Russ.)
  69. Zolnikov I. D., Anoikin A. A., Filatov Ye.A. et al. (2021). New evidence of the Late Neopleistocene peopling of the Lower Ob Valley. Arkheologia, etnografia i antropologia Evrazii. Iss. 49. № 1. P. 9—20. (in Russ.). https://doi.org/10.17746/1563-0102.2021.49.1.009-020

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Location map: discussed sites are lettered. Thick lines are limits of different glaciations.

Baixar (213KB)
3. Fig. 2. Cryogenic aeolian sediments of the Arcctic. (а) — typical striped Yedoma formation of loess-like silts with bands of segregated ice and moss seams penetrated by syngenetic ice wedges at Bol. Lyakhovsky Island, 73.5°N (photo by V.Ye. Tumskoy). (б) — dated sequence at the Syo-Yakha river mouth (C in fig. 1) by (Vasilchuk, Vasilchuk, 1998), simplified. 1 — fine sand, 2 — coarse silt, 3 — silt with peaty seams, 4 — syngenetic ice wedges. ¹⁴C dates not calibrated.

Baixar (500KB)
4. Fig. 3. Upper Pleistocene periglacial sediments interrelated in north-eastern European Russia (principal profile, modified after (Astakhov, Svendsen, 2011)).

Baixar (294KB)
5. Fig. 4. Subaerial deposits of the Upper Pleistocene near Akis settlement on the western bank of the Pechora River (65°50ʹ N; А in fig. 1). (а) — loess-like silt with ferruginous smears changing upwards into coversand; (б) — aeolian sand (А) with a tongue of soliflucted diamicton (Б) and dessication cracks of the palaeosol (В).

Baixar (1MB)
6. Fig. 5. Section of sandy coastal lowland on Timan Beach (67°50ʹ N., 49°10ʹ E; TБ in fig. 1). Characteristic sequence of postglacial Pleistocene of the Lower Pechora: dominant aeolian sands underlain by limnic silts and sands with wisps of solifluction sediments by (Mangerud et al., 1999). 1 — peat; 2 — аeolian dune sands; 3 — pebble lag; 4 — аeolian horizontally bedded sands; 5 — solifluction diamicton; 6 — limnic laminated sands; 7 — cobble gravel; 8 — disturbed silts and sands; 9 — marine silt and clays; 10 — till; 11 — ice-wedge casts; 12 — OSL dates; 13 — ¹⁴C dates.

Baixar (467KB)
7. Fig. 6. Aeolian landforms in the lower reaches of the Pechora River. (а) — overgrown dune on Kuya River east of Naryan-Mar city (K in fig. 1); (б) — sandy residual hillocks armoured by cobbly gravel west of the Pechora mouth; (в) — wind-eroded tiny residual cones on the crest of a glaciotectonic ridge at Vashutkiny Lakes (68°5ʹ N., 61°38ʹ E; В in fig. 1) (Astakhov, Svendsen, 2011).

Baixar (924KB)
8. Fig. 7. Niveo-aeolian sands. (а) — western beach of the Korovinstaya Estuary at the Pechora River mouth (68°25ʹ N., 53°22ʹ E; Ko in fig. 1), (б) — sand pit in Aksarka, southern bank of the Ob River (Polar Circle; Ak in fig. 1) (Astakhov, 2014). Note the sharp boundaries between thin bands of fine sand and dark silt, tiny frost cracks (a), droplet disturbances and weed rootlets (б).

Baixar (1MB)
9. Fig. 8. Finely stratified, dense coversand (А), overlain by diagonally bedded loose dune sand (Б) on Kuya River near the bridge (67°33ʹ N, 53°20ʹ E; K in fig. 1).

Baixar (508KB)
10. Fig. 9. Section of Palaeolithic site Byzovaya on the eastern bank of the Pechora River (65° N; Б in fig. 1). Interstadial soliflucted diamicton with mammoth bones and tools of early Late Palaeolithic overlain by subaerial sequence of arid periglacial after (Svendsen et al., 2008; Heggen et al., 2012). ¹⁴C dates not calibrated.

Baixar (503KB)
11. Fig. 10. Mirrorred pattern of periglacial landscapes in airphotos of 1:50 000 scale after (Astakhov, 1998). (а) — modern thermokarst lakes (black) and their dry floors (gray) on the perennially frozen lowland along the Barents Sea coast 68°30ʹ N, 55°20ʹ E; (б) — thawed Pechora River terrace 240 km to the south: flatbread-like forested hummocks 5—10 m high (dark gray) built of fine limnic sand resultant from thermokarst inversion of shallow lakes; (в) — similar inversion topography of the thawed sandy plateau in the Siberian Uvaly (63° N, 82°E).

Baixar (1MB)
12. Fig. 11. Section of the 2nd terrace of Usa River at the Palaeolithic site Mamontovaya Kurya (Polar Circle, MK in fig. 1). Evidence of postglacial fluvial and aeolian sedimentation in periglacial environment 40 to 14 ka BP after (Svendsen, Pavlov, 2003). 1 — small ice-wedge cast; 2 — rippled silt; 3 — horizontally bedded sand; 4 — cross-bedded dune sand; 5 — cross-bedded gravel; 6 — bones and tusk; 7 — stone tools; 8 — silty lumps; 9 — OSL date (ka BP)×10³; 10 — radiocarbon date ¹⁴C (BP)×10³.

Baixar (436KB)
13. Fig. 12. Pollen diagram of the Mamontovaya Kurya (МК in fig. 1) sequence indicating tundra-steppe landscapes along Usa River at 40 to 24 BP in modern northern boreal forest (Halvorsen, 2000).

Baixar (1MB)
14. Fig. 13. Periglacial sediments exposed on the northern bank of the Ob River, Mega channel, 61°4ʹ N., 76°20ʹ E, in the downstream part of section fig. 14 (а – loess-like silt, б — ice-wedge cast, в — fine sandy sediment of a thermokarst pond). Greenish colour of the massive silt (“wet loess”) indicates reducing environment of the aeolian sedimentation.

Baixar (1MB)
15. Fig. 14. Sections of Late Pleistocene periglacial formations on the Transverse Ob River, 61° N. (а) — downstream part of the Mega sequence at 13 km upstream of the town of Megion (Astakhov, 1989), (б) — generalized profile of sections along Mega channel by (Astakhov, 2006). 1 — loess-like silt; 2 — sandy rhythmite; 3 — sand and clay intercalated; 4 — clay; 5 — peaty rhythmite; 6 — crudely laminated sand; 7 — peaty soils; 8 — ice-wedge casts. Radiocarbon dates by (Arkhipov et al., 1980). ¹⁴C dates not calibrated.

Baixar (816KB)
16. Fig. 15. Periglacial formations of the Transverse Ob River along profile Lokosovo–Mega–Agan (Astakhov, 1989) (61° N; Л-М-Аг in fig. 1). ¹⁴C dates not calibrated.

Baixar (320KB)
17. Fig. 16. Sedimentary sequence of the 2nd terrace of Tobol River on eastern bank near settlement Lipovka (57°50ʹ N; Ли in fig. 1) simplified after (Kaplyanskaya, Tarnogradsky, 1974). 1 — oxbow-lake clay cut by ice-wedge casts, 2 — conterminal unit: massive silts with tundra paleosols and a horizon of rooted larch stumps (П), 3 — sandy silt with interlayers of fine sand, 4 — laminated fine sand with silt seams.

Baixar (202KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024