RELATIVE SEA-LEVEL CHANGE OF THE WHITE SEA IN THE LATE GLACIAL AND HOLOCENE: CASE STUDY OF THE SREDNYAYA TRET’ LAKE, EASTERN COAST OF THE GORLO STRAIT4
- Autores: Repkina T.Y.1, Kublitskiy Y.A.2, Leontiev P.A.2, Gurinov A.L.1,3, Vakhrameeva E.A.4, Losyuk G.N.4, Shilova O.S.5, Lugovoy N.N.1,5
-
Afiliações:
- Institute of Geography, Russian Academy of Sciences
- Herzen State Pedagogical University of Russia
- Higher School of Economics, the Faculty of Geography and Geoinformation Technology
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
- Lomonosov Moscow State University, Faculty of Geography
- Edição: Volume 54, Nº 4 (2023)
- Páginas: 105-130
- Seção: Paleolimnological research in Russia: from Kaliningrad to Kamchatka
- URL: https://medjrf.com/2949-1789/article/view/660700
- DOI: https://doi.org/10.31857/S2949178923040084
- EDN: https://elibrary.ru/HMZBFW
- ID: 660700
Citar
Resumo
The relative sea-level changes for the time interval of ~12.1–9.1 ka cal BP were reconstructed on the eastern coast of the Gorlo Strait using the results of paleolimnological, GPR and geomorphological analyses conducted in the basin of the Srednyaya Tret’ Lake (7.3 m a.s.l., 66.014009° N, 41.086294° E), as well as UAV surveying of the lake surroundings. Bottom sediments of the lake were studied from the four core sections and correlated with each other according to the results of GPR data interpretation. Lithostratigraphic descriptions of bottom sediment cores, grain-size and diatom analyses, radiocarbon dating (AMS), determination of LOI, Corg content and Corg /Norg ratio were performed. We present the reconstruction of the coastlines at heights of 4–5 and 12–15 m formed by currents and/or wave processes within the lower Ruch’i River valley and Srednyaya Tret’ Lake according to field observations and interpretation of space images. As a result, the position of the relative sea-level and the chronology of the Late Glacial (Younger Dryas) transgression and the early stages of the Holocene (Tapes) transgression were refined. Late glacial transgression finished earlier than ~12.1 ka cal BP, and its relative level was probably no higher than 15 m a.s.l. After a deep regression, the relative sea-level approached the modern again ~9.5 ka cal BP, and at the Tapes transgression maximum (~9.1 ka cal BP) it was near the lake runoff threshold (∼5 m). Though the coastline was near the lake basin, sea waters never entered the lake. Sands, carried by the wind, accumulated in the part of the basin facing the coast. The the Srednyaya Tret’ Lake basin was gradually filled by fresh water according to the results of diatom analysis.
Sobre autores
T. Repkina
Institute of Geography, Russian Academy of Sciences
Autor responsável pela correspondência
Email: t-repkina@yandex.ru
Russia, Moscow
Yu. Kublitskiy
Herzen State Pedagogical University of Russia
Autor responsável pela correspondência
Email: uriy_87@mail.ru
Russia, Saint-Petersburg
P. Leontiev
Herzen State Pedagogical University of Russia
Autor responsável pela correspondência
Email: barograph@yandex.ru
Russia, Saint-Petersburg
A. Gurinov
Institute of Geography, Russian Academy of Sciences; Higher School of Economics, the Faculty of Geography and Geoinformation Technology
Autor responsável pela correspondência
Email: gurinov.artem@gmail.com
Russia, Moscow; Russia, Moscow
E. Vakhrameeva
N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: vakhr-elena@yandex.ru
Russia, Arkhangelsk
G. Losyuk
N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: glosyuk@yandex.ru
Russia, Arkhangelsk
O. Shilova
Lomonosov Moscow State University, Faculty of Geography
Autor responsável pela correspondência
Email: o.olyunina@mail.ru
Russia, Moscow
N. Lugovoy
Institute of Geography, Russian Academy of Sciences; Lomonosov Moscow State University, Faculty of Geography
Autor responsável pela correspondência
Email: lugovoy-n@yandex.ru
Russia, Moscow; Russia, Moscow
Bibliografia
- Agafonova E., Polyakova Y., Novichkova Y. (2020). The diatom response to Postglacial environments in the White Sea, the European Arctic. Marine Micropaleontology. Vol. 161. https://doi.org/10.1016/j.marmicro.2020.101927
- Aibulatov N.A. (1990). Dinamika tverdogo veshchestva v shel’fovoi zone (Dynamics of solid matter in the shelf zone). Leningrad: Gidrometizdat (Publ.). 271 p. (in Russ.)
- Arkhipkin V.S., Dobrolyubov S.A., Myslenkov S.A. et al. (2015). Wave climate of the White Sea. Izmeneniya klimata i sotsial’no-ekonomicheskii potentsial Russiiskoi Arktiki. S.A. Sokratov (Ed.). Vol. 1. M.: Liga-Vent (Publ.). P. 48–58.
- Astafiev B.Yu., Bogdanov Yu.B., Voinova O.A. et al. (2012). Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. M-b 1:1000000 (tret’e pokolenie). Seriya Baltiiskaya. L. Q-37 – Arkhangel’sk. Ob”yasnitel’naya zapiska (State Geological Map of Russian Federation on a Scale of 1:1000000. Baltic Ser. Sheet Q-37 – Arkhangelsk. Explanatory Letter). 3d ed. St. Petersburg: VSEGEI (Publ.). 302 p. (in Russ.)
- Badyukova E.N., Solovieva G.D. (2015). Coastal eolian landforms and sea level fluctuations. Oceanology. Vol. 55. No. 1. С. 124–130. https://doi.org/10.1134/S0001437015010014
- Baranskaya A.V., Khan N., Romanenko F.A. et al. (2018). A postglacial relative sea-level database for the Russian Arctic coast. Quat. Sci. Rev. Vol. 199. P. 188–205. https://doi.org/10.1016/j.quascirev.2018.07.033
- Belyaev N.A. (2015). Organicheskoe veshchestvo i uglevodorodnye markery Belogo morya (Organic matter and hydrocarbon markers of the White Sea). PhD thesis. Moscow: IO RAS (Publ.). 24 p. (in Russ.).
- Bird E.C.F. (2008). Coastal geomorphology: an introduction. Second edition. Chichester, Hoboken, NJ: Wiley. 411 p.
- Creel R.C., Austermann J., Khan N.S. et al. (2022). Postglacial relative sea level change in Norway. Quat. Sci. Rev. Vol. 282. https://doi.org/10.1016/j.quascirev.2022.107422
- Demidov I.N., Houmark-Nielsen M., Kjaer K.H. et al. (2006). The last Scandinavian Ice Sheet in nothwestern Russia: ice flow patterns and decay dynamics. Boreas. Vol. 35. P. 425–433.
- Donner J., Eronen M., Jungner H. (1977). The dating of the Holocene relative sea–level changes in Finnmark, North Norway. Norsk Geografisk Tidsskrift. Vol. 31. Iss. 3. P. 103–128. https://doi.org/10.1080/00291957708552013
- Ekman I., Iljin V. (1995). Deglaciation, the Young Dryas end moraines and their correlation in Russian Karelia and adjacent areas. Glacial deposits in North-east Europe. Rotterdam: Balkama (Publ.). P. 195–209.
- Elina G.A., Lukashov A.D., Yurkovskaya T.K. (2000). Pozdnelednikov’e i golotsen Vostochnoi Fennoskandii (paleorastitel’nost' i paleogeografiya) (Late Glacial and Holocene of Eastern Fennoscandia (paleovegetation and paleogeography)). Petrozavodsk: Karel’skii NTs RAN (Publ.). 242 p. (in Russ.)
- FABDEM (Forest And Buildings removed Copernicus DEM) [Electronic data]. Access way: https://www.fathom.global/product/fabdem/ (access date: 01.02.2023).
- Gelman N.E., Terentyeva E.A., Shanina T.M. (Eds.). (1987). Metody kolichestvennogo organicheskogo elementnogo mikroanaliza (Methods of quantitative organic elemental microanalysis). Moscow: Khimia (Publ.) 292 р. (in Russ.)
- Glukhovskiy B.Kh., Terziyev F.S. (Eds.). (1991). Gidrometeorologiya i gidrokhimiya morei SSSR. T. II. Beloe more (Hydrometeorology and hydrochemistry of the seas of the USSR. T. II. White Sea). Leningrad: Gidrometeoizdat (Publ.). 240 p. (in Russ.)
- Hatchinson D. (1969). Limnologiya. Geograficheskie, fizicheskie i khimicheskie kharakteristiki ozer (Limno-logy. Geographical, Physical and Chemical Characte-ristics of Lakes). Moscow: Progress (Publ.). 591 р. (in Russ.)
- Heiri O., Lotter A., Lemeke G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibilility and comparability of results. J. Paleolimnol. Vol. 25. P. 101–110. https://doi.org/10.1023/A:1008119611481
- Hughes A.L.C., Gyllencreutz R., Lohne Ø.S. et al. (2015). The last Eurasian ice sheets – a chronological database and time-slice reconstruction. DATED-1. Boreas. Vol. 45. Iss. 1. P. 1–45. https://doi.org/10.1111/bor.12142.
- Kaplin P.A., Selivanov A.O. (1999). Izmenenie urovnei morei Rossii i razvitie beregov (Changing the levels of the Russian seas and the development of the coast). Moscow: GEOS (Publ.). 299 p. (in Russ.)
- Khan N.S., Vane C.H., Engelhart S.E. et al. (2019). The application of δ13C, TOC and C/N geochemistry of mangrove sediments to reconstruct Holocene paleoenvironments and relative sea levels, Puerto Rico. Marine Geology. Vol. 415. https://doi.org/10.1016/j.margeo.2019.105963.
- Kolka V.V., Yevzerov V.Ya., Meller J. et al. (2005). Post-Glacial glacioisostatic movements in the North-East of the Baltic Shield. Novye dannye po geologii i poleznym iskopaemym Kol’skogo poluostrova. Apatity: KSC RAS (Publ.). P. 15–25. (in Russ.)
- Kondrin A.T., Korablina A.D., Arkhipkin V.S. (2018). Rezul’taty chislennogo modelirovaniya shtormovykh nagonov v Belom more (Results of numerical modeling of storm surges in the White Sea). Moscow University Bulletin. Series 5. Geography. 2018. No. 2. P. 43–52. (in Russ.).
- Korsakova O., Vashkov A., Nosova O. (2022a). Chapter 12 – European Russia: glacial landforms during deglaciation. Palacios D., Hughes P.D., Garcia-Ruiz J.M., Andres N. (Eds.). European Glacial Landscapes. The Last Deglaciation. Amsterdam, Oxford, Cambridge: Elsevier (Publ.). P. 105–110. https://doi.org/10.1016/B978-0-323-91899-2.00025-5
- Korsakova O., Vashkov A., Nosova O. (2022b). Chapter 31 – European Russia: glacial landforms from the Bølling-Allerød Interstadial. Palacios D., Hughes P.D., Garcia-Ruiz J.M., Andres N. (Eds.). European Glacial Landscapes. The Last Deglaciation. Amsterdam, Oxford, Cambridge: Elsevier (Publ.). P. 305–310. https://doi.org/10.1016/B978-0-323-91899-2.00014-0
- Korsakova O.P. (2022). White Sea coasts within Fennoscandian crystal Shield in the Neopleistocene and Holocene. Izvestiya RAN. Ser. Geograficheskaya. Vol. 86. No. 6. P. 883–897. (in Russ.). https://doi.org/10.31857/S258755662206005X
- Korsakova O.P., Kolka V.V., Tolstobrova A.N. et al. (2016). Lithology and late postglacial stratigraphy of bottom sediments in isolated basins of the White Sea coast exemplified by a small lake in the Chupa settlement area (Northern Karelia). Stratigraphy and Geological Correlation. Vol. 24(3). P. 294–312. https://doi.org/10.1134/S0869593816030035
- Kublitskiy Yu., Repkina T., Leontiev P. et al. (2023). Reconstruction of relative sea-level changes based on a multiproxy study of isolated basins on the Onega Peninsula (White Sea, northwestern Russia). Quat. Int. P. 79–95. https://doi.org/10.1016/j.quaint.2022.04.016
- Lamb A.L., Wilson G.P., Leng M.J. (2006). A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Sci. Rev. Vol. 75. No. 1–4. P. 29–57. https://doi.org/10.1016/j.earscirev.2005.10.003
- Lancaster N., Wolfe S., Thomas D. et al. (2016). The INQUA Dunes Atlas chronologic database. Quat. Int. Vol. 410. Part B. P. 3–10.
- Larsen E., Kjar K.H., Demidov I.N. et al. (2006). Late Pleistocene glacial and lake history of northwestern Russia. Boreas. Vol. 35. Iss. 3. P. 394–424. https://doi.org/10.1080/03009480600781958
- Lavrova M.A. (1960). Chetvertichnaya geologiya Kol’skogo poluostrova (Quaternary Geology of the Kola Peninsula). Moscow-Leningrad: AN SSSR (Publ.). 233 p. (in Russ.)
- Lein A.Y., Lisitsyn A.P. (2017). Protsessy rannego diageneza v arkticheskikh moryakh (na primere Belogo morya) (Processes of early diagenesis in the Arctic seas (on the example of the White Sea)). The White Sea system. Vol. IV. Moscow: Scientific World (Publ.). P. 512–555. (in Russ.)
- Logvinenko N.V., Sergeeva E.I. (1986). Metody opredeleniya osadochnykh porod (Methods for the determination of sedimentary rocks). Leningrad: Nedra (Publ.). 240 p. (in Russ.)
- Lugovoy N.N., Repkina T.Yu. (2019). Coastal dynamics of the accumulative Intsy cape (Zimniy Coast of the White sea). INQUA 2019 Abstracts. P–3007.
- Lunkka J.-P., Putkinen N., Miettinen A. (2012). Shoreline displacement in the Belomorsk area, NW Russia during the younger Dryas stadial. Quat. Sci. Rev. Vol. 37. P. 26–37. https://doi.org/10.1016/j.quascirev.2012.01.023
- Meyers P.A. (1994). Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology. Vol. 114(3–4). P. 289–302. https://doi.org/10.1016/0009-2541(94)90059-0
- MI No. 88–16365–010–2017 Donnye otlozheniya vodoemov. Opredelenie granulometricheskogo sostava sitovym i pipetochnym metodami (Bottom sediments of water bodies. Determination of particle size distribution by sieve and pipette methods). Introduced on December 26, 2017. (2017) Arkhangelsk. 12 p. (in Russ.)
- Nemirovskaya I.A., Budko D.F. (2023). Organicheskie soedineniya i metally v osadkakh otdelyayushchikhsya vodoemov Kandalakshskogo zaliva Belogo morya (Organic compounds and metals in sediments of separated water bodies of the Kandalaksha Bay of the White Sea). Geohimiya. Vol. 68. No. P. 197–216. (in Russ.).
- Nevessky E.N., Medvedev V.S., Kalinenko V.V. (1977). Beloe more. Sedimentogenez i istoriya razvitiya v golotsene (White Sea. Sedimentogenesis and history of development in the Holocene). Moscow: Nauka (Publ.). 236 p. (in Russ.)
- Novichkova Y.A., Reikhard L.Y., Lisitzin A.P. et al. (2017). New data on the Holocene evolution of the Dvina Bay (White Sea). Dokl. Earth Sc. Vol. 474. P. 607–611. https://doi.org/10.1134/S1028334X17050233
- Oborin S.V., Shchukin I.A., Sobolev V.M. (1991). Geological Structure and Minerals of the White Sea Gorlo Strait. Otchet Morskoi geologo-geofizicheskoi partii o rezul’tatakh geologo-s"emochnykh rabot masshtaba 1:200 000, provedennykh v 1988–1991 godakh. Novodvinsk: Arkhangelskogeologiya (Publ.). 289 p. (in Russ.)
- Pobedonostsev S.V., Rozanov L.L. (1971). Modern vertical movements of the coasts of the White and Barents Seas. Geomorfologiya. No. 3. P. 57–62. (in Russ.)
- Polyakova Y.I., Novichkova,Y.A., Lisitzin A.P. et al. (2014). Modern data on the biostratigraphy and geochronology of White Sea sediments. Dokl. Earth Sci. Iss. 454. No. P. 169–174. https://doi.org/10.1134/S1028334X14020032
- Ramsay W. (1898). Über die geologische Entwicklung der Halbinsel Kola in der Quartärzeit. Fennia. Bd. XVI. No. 1. P. 1–151.
- Reimer P.J., Austin W.E.N., Bard E. et al. (2020). The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon. Vol. 62. P. 725–757. http://dx.doi.org/10.1017/RDC.2020.41
- Repkina T.Yu., Lugovoi N.N., Gurinov A.L. et al. (2022). Anthropogenic changes in eolian processes on the coast of the White Sea. Izvestiya RAN. Ser. Geograficheskaya. Iss. 86. No. 6. P. 1046–1062. (in Russ.) https://doi.org/10.31857/S2587556622060140
- Repkina T.Yu., Zaretskaya N.E., Shilova O.S. et al. (2019). Southeastern coast of the Gorlo Strait of the White Sea in the Holocene: relief, sediments, dynamics. Rel’ef i chetvertichnye obrazovaniya Arktiki, Subarktiki i Severo-Zapada Rossii. Vol. 6. St. Petersburg: AANII (Publ.). P. 146–153. (in Russ.). https://doi.org/10.24411/2687-1092-2019-10621
- Repkina T.Yu., Zaretskaya N.E., Subetto D.A. et al. (2017). Morphodynamics of the shores of the northwestern Onega Peninsula of the White Sea in the Holocene. Guba Konyukhova. Trudy Karel’skogo NTs RAN. No. 8. P. 1–19. (in Russ.)
- Romanenko F.A., Shilovtseva O.A., Repkina T.Yu. et al. (2017). Modern climate of the northwestern White Sea and permafrost islands. Izuchenie, ratsional’noe ispol’zovanie i okhrana prirodnykh resursov Belogo morya. St. Petersburg: Zoological Institute RAS (Publ.). P. 169–172. (in Russ.)
- Rosentau A., Klemann V., Bennike O. et al. (2021). A Holocene relative sea-level database for the Baltic Sea. Quat. Sci. Rev. Vol. 266. P. 1–19. https://doi.org/10.1016/j.quascirev.2021.107071
- Rybalko A.E., Zhuravlev V.A., Semenova L.R. et al. (2017). Quaternary sediments of the White Sea and the history of the development of the modern White Sea basin in the late Pleistocene – Holocene. The White Sea system. Vol. IV. Protsessy osadkoobrazovaniya, geologiya i istoriya. Moscow: Scientific World (Publ.). P. 84–127. (in Russ.)
- Safyanov G.A. (1996). Geomorfologiya morskikh poberezhii (Geomorphology of sea coasts). Tutorial. M.: Publishing House of Moscow State University (Publ.). 400 s.
- Shilova O.S., Zaretskaya N.E., Repkina T.Yu. (2019). Holocene deposits of the southeastern coast of the Gorlo Strait (White Sea): new data of diatom and radiocarbon analyses. Dokl. Earth Sci. Vol. 488. No. 6. P. 1259–1263. https://doi.org/10.1134/S1028334X19100258
- Sobolev V.M. (2008). Composition, stratigraphy of the Late Quaternary deposits of the Gorlo Strait of the White Sea and the main features of its paleogeography. Problemy paleogeografii i stratigrafii pleistotsena. Vol. 2. Moscow: MGU (Publ.). P. 144–156. (in Russ.)
- Sobolev V.M., Aleshinskaya Z.V., Polyakova Ye.I. (1995). New data on the paleogeography of the White Sea in the Late Pleistocene-Holocene. A.A. Svitoch (Ed.). Korrelyatsiya paleogeograficheskikh sobytii: Materik–Shel’f–Okean. Moscow: MGU (Publ.). P. 120–129. (in Russ.)
- Starovoitov A.V. (2008). Interpretatsiya georadiolokatsionnykh dannykh. Uchebnoe posobie (Interpretation of Geo-Radar Data. Training Manual). Moscow: MGU (Publ.). 192 p. (in Russ).
- Stuiver M., Reimer P.J. (1993). Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program. Radiocarbon. Vol. 35. No. 1. P. 215–230. https://doi.org/10.1017/S0033822200013904
- Subetto D.A. (2009). Donnye otlozheniya ozer: paleolimnologicheskie rekonstruktsii (Bottom Sediments of Lakes: Paleolimnological Reconstructions). St. Petersburg: RGPU (Publ.). 339 p. (in Russ.)
- Tide prediction. (Predraschet prilivov.) [Electronic resource]. URL: http://portal.esimo.ru/portal/portal/esimo-user/services/tides (Accessed 05/17/2023)
- Timireva S.N., Filimonova L.V., Zyuganova I.S. et al. (2022). Environmental changes in the Tersky Coast of White Sea (Kola Peninsula) during the Holocene inferred from multy-proxy study of the Kuzomen Moch peatland. Geomorfologiya. No. 3. P. 39–50. (in Russ.) https://doi.org/10.31857/S0435428122030178
- Tolstobrova A.N., Korsakova O.P., Tolstobrov D.S. (2022). The late-glacial – Holocene stratigraphy of bottom sediments from small isolated lakes in the Barents Sea coast (Kola region). Vestnik geonauk. No. 6. P. 26–37. (in Russ.) https://doi.org/10.19110/geov.2022.6.3
- Velichko A.A., Faustova M.A., Pisareva V.V. et al. (2017). History of the Scandinavian ice sheet and surrounding landscapes during Valday ice age and the Holocene. Led i Sneg (Ice and Snow). Vol. 57. No. 3. P. 391–416. (in Russ.).
- Vykhovanets G.V. (2003). Eolovyi protsess na morskom beregu (Aeolian process on the seashore). Odessa: Astroprint (Publ.). 368 p. (in Russ.)
- White Sea map ru.png [Electronic resource]. URL: https://commons.wikimedia.org/w/index.php?curid=12404892 (date of the application 01.01.2022).
- Yandex-Maps. [Electronic resource]. URL: https://yandex.ru/maps/ (date of the application: 01.01.2023)
- Yevzerov V.Ya., Korsakova O.P., Kolka V.V. (2007). The history of the development of marine basins in the White Sea depression over the past 130 thousand years (state of the issue and prospects for research). Byull. Komis. po izuch. chetvertich. perioda. No. 67. P. 54–65. (in Russ.)
- Zaretskaya N.E., Baranov D.V., Ruchkin M.V. et al. (2022). The Southeastern White Sea Coast in the Late Pleistocene. Izvestiya RAN. Ser. Geograficheskaya. Iss. 86. No. 6. P. 898–913. (in Russ.) https://doi.org/10.31857/S2587556622060164
- Zaretskaya N.E., Rybalko A.E., Repkina T.Yu. et al. (2020). Late Pleistocene in the southeastern White Sea and adjacent areas (Arkhangelsk region, Russia): stratigraphy and palaeoenvironments. Quat. Int. Vol. 605–606. P. 126–141. https://doi.org/10.1016/j.quaint.2020.10.057
- Zorenko T.N., Ershov L.A., Zatulskaya T.Yu. (1993). Gosudarstvennaya geologicheskaya karta Rossiiskoi Fe-deratsii. M-b 1:200 000. Seriya Onezhskaya. Listy Q-37-XXII, XXIII, XXIV. Ob”yasnitel’naya zapiska (State Geological Map of Russian Federation on a Scale of 1:200 000. Onega Ser. Sheets Q-37-XXII, XXIII, XXIV. Explanatory Letter). St. Petersburg: VSEGEI (Publ.). 56 p. (in Russ.)
Arquivos suplementares
