Pleistocene loess-soil sequence and aeolian relief of Western Siberia: chronology and features of their formation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The article discusses the current state of chronostratigraphy and paleogeography of the loess-soil sequence of the Pleistocene of Western Siberia, which is one of the most complete in Northern Eurasia. It is shown that genetically loess is closely related to eolian formations formed as a result of activation of eolian processes in earlier arid epochs of the Late Cenozoic in North Asia. A deflationary and accumulative eolian relief, paragenetically associated with the formation of the subaerial formation, is described, showing a slight transfer of material that forms the loess stratum. It has been established that the eolian relief and the activation of eolian processes occurred during the cold periods of the Pleistocene with the predominance of southwestern winds. The basis of the stratigraphic subdivision and correlation of sections of the loess strata are fossil soils formed under strictly defined climatic conditions. Consistent tracking of the loess and soil horizons of the loess sequence of the Pleistocene of Western Siberia, taking into account radiocarbon and luminescent dating and the use of climatostratigraphic correlations, showed that its structure and composition clearly reflect the uniqueness of each paleogeographic epoch, associated with changes in the intensity of atmospheric circulation in the cold and warm epochs of the Pleistocene. The features of each specific epoch are recorded in a combination of unique individual features of certain horizons of the loess-soil sequence. In the alternating horizons of loesses and soils, a record of global and regional changes in landscapes and climate has been preserved, reflecting the originality and uniqueness of the paleogeography of each time epoch. The structure and composition of the loess strata reflect the different intensity of atmospheric circulation during the cold and warm epochs of the Pleistocene. It is shown that the chronological sequence of the loess-soil sequence of Western Siberia, based only on OSL dates, does not always coincide with the loess-soil sequence of Western Siberia, built on the integration of various approaches, with the predominant use of the paleopedological method, and therefore needs to be corrected. The best correlation results are achieved by combining all available dating methods with the involvement of biostratigraphic, sedimentological and geological data, based on the climatostratigraphic principle.

Sobre autores

V. Zykina

Sobolev Institute of Geology and Mineralogy, SB RAS; Institute of Geography RAS

Autor responsável pela correspondência
Email: zykina@igm.nsc.ru
Rússia, Novosibirsk; Moscow

V. Zykin

Sobolev Institute of Geology and Mineralogy, SB RAS; Institute of Geography RAS; Novosibirsk State University

Email: zykina@igm.nsc.ru
Rússia, Novosibirsk; Moscow; Novosibirsk

E. Malikova

Sobolev Institute of Geology and Mineralogy, SB RAS

Email: zykina@igm.nsc.ru
Rússia, Novosibirsk

Bibliografia

  1. Arkhipov S., Zykina V., Krukover A. A. et at. (1997). Stratigraphy and paleomagnetism of glacial and loess-soil deposits on the West-Siberian plain. Russian Geology and Geophysics. V. 38. № 6. P. 1027—1048. (in Russ.)
  2. Bábek O., Chlachula J., Grygar T. M. (2011). Non-magnetic indicators of pedogenesis related to loess magnetic enhancement and depletion: Examples from the Czech Republic and southern Siberia. Quat. Sci. Rev. V. 30 (7—8). P. 967—979. https://doi.org/10.1016/j.quascirev.2011.01.009
  3. Broecker W. S. (2000). Abrupt climate change: causal constraints provided by the paleoclimate record. Earth-Sci. Rev. V. 51. P. 137—154.
  4. Chirkin K. A., Smolyaninova L. G., Zykin V. S. et al. (2009). About Bruchnes-Matuyama boundary in subaeral deposites south-east part of Western Siberia. In: Fundamental’nye problemy kvartera: itogi izucheniya i osnovnye napravleniya dal’neishikh issledovanii. Novosibirsk: SO RAN (Publ.). P. 622—624. (in Russ.)
  5. Chlachula J., Little E. (2011). A high-resolution Late Quaternary climatostratigraphic record from Iskitim, Priobie Loess Plateau, SW Siberia. Quat. Int. V. 240. № 1—2. P. 139—149. https://doi.org/10.1016/j.quaint.2011.01.045
  6. Daxner-Höck G., Höck V., Badamgarav D. et al. (1997). Cenozoic Stratigraphy based on a sediment-basalt association in Central Mongolia as Requirement for Correlation across Central Asia. In: Mémoires et Travaux de l’Institut de Montpellier, E.P.H.E. V. 21. P. 163—176.
  7. Ding Z. L., Sun J. M., Liu T. S. et al. (1998). Wind-blown origin of the Pliocene red clay formation in the central Loess Plateau, China. Earth and Planetary Science Letters. V. 161. P. 135—143.
  8. Dobretsov N. L., Zykin V. S., Zykina V. S. (2003). Structure of the pleistocene loess-soil sequence of Western Siberia and its correlation with the Baikalian and global records of climatic changes. Doklady Earth Sci. V. 391. № 6. P. 821—824. (in Russ.)
  9. Dodonov A. E. (2002). Chetvertichnyi period Srednei Azii: Stratigrafiya, korrelyatsiya, paleogeografiya (The Quaternary Period of Central Asia: Stratigraphy, Correlation, and Paleogeography). Moscow: GEOS (Publ.). 250 p. (in Russ.)
  10. Drozdov N. I., Checha I. P., Hazarts P. (2005). Geomorfologiya i chetvertichnye otlozheniya Kurtakskogo geoarkheologicheskogo raiona (Severo-Minusinskaya vpadina) (Geomorphology and Quaternary deposits of the Kurtak geoarchaeological area (North Minusinsk depression)). Krasnoyarsk: IPK KSPU (Publ). 109 p. (in Russ.)
  11. Frechen M., Zander A., Zykina V. et al. (2005). The loess record from the section at Kurtak in Middle Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology. V. 228. P. 228—244. https://doi.org/10.1016/j.paleo.2005.06.004
  12. Goudie A., Kent P., Viles H. (2016). Pan morphology, Distribution and formation in Kazakhstan and Neighbouring areas of the Russian federation. Desert. V. 21. № 1. P. 1—13. https://doi.org/10.22059/JDESERT.2016.58313
  13. Guo Z. T., Ruddiman W. F., Hao Q. Z. et al. (2002). Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature. V. 416. P. 159—163. https://doi.org/10.1038/416159a
  14. Haesaerts, P., Chekha, V.P., Damblon, F. et al. (2005). The loess-palaeosol succession of Kurtak (Yenisei basin, Siberia): a reference record of the Karga stage (MIS3). Quatenaire. V. 18. № 1. P. 3—24. https://doi.org/10.4000/quaternaire.171
  15. Höck V., Daxner-Höck G., Schmid H. P. et al. (1999). Oligocene-Miocene sediments, fossils and basalts from the Valley of Lakes (Central Mongolia) — An integrated study. In: Mitt. Österr. Geol. Ges. Bd. 90. P. 83—125.
  16. Karabanov E. B., Prokopenko A. A., Kuz´min M.I. et al. (2001). Glacial and interglacials perods of Siberia: paleoclimatic record of Lake Baikal and correlation with West Siberian stratigraphy scheme (Brunhes Chron). Russian Geology and Geophysics. V. 42. № 1—2. P. 48—63. (in Russ.)
  17. Kes A. S., Fedorovich B. A. (1975). The problem of zoning and age of eolian-soil fine earths (loesses and their analogues). In: Problemy regional’noi i obshchei paleogeografii lessovykh i periglyatsial’nykh oblastei. M.: Nauka (Publ.). P. 90—101. (in Russ.)
  18. Kornutova E. I. (1984). Stratigraphy of Paleogene and Neogene deposits of the Shilka-Onon region of Transbaikalia. In: Sreda i zhizn’ na rubezhakh epokh kainozoya v Sibiri i na Dal’nem Vostoke. Novosibirsk: Nauka (Publ.). P. 128—132. (in Russ.)
  19. Krukover A. (2007). Quaternary arvicolid faunas of the southern West Sibirian Plain. CFS Cour Forschungsinstitut Senckenb. V. 259. P. 93—98.
  20. Krukover A. A. (1992). Chetvertichnye mikroteriofauny prilednikovoi i vnelednikovoi zon Zapadnoi Sibiri (Quaternary microtheriofauna of the periglacial and extraglacial zones of Western Siberia). PhD thesis. Novosibirsk. 19 p. (in Russ.)
  21. Kukla G. J., An Z. S., Melice J. L. et al. (1990) Magnetic susceptibility record of Chinese loess. Trans Royal Society Edinburgh: Earth Science. V. 81. P. 263—288. https://doi.org/10.1017/S0263593300020794
  22. Kurbanov R. N., Taratunina N. A., Volvakh N. E. (2020). Experience in the use of OSL dating in the study of loess-soil series of Northern Eurasia. In: Aktual’nye problemy paleogeografii pleistotsena. Nauchnye dostizheniya Shkoly akademika K. K. Markova. Moscow: Faculty of Geography of Moscow State University (Publ.). P. 595—613. (in Russ.)
  23. Lisiecki L. E., Raymo M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography. V. 20. PA. 1003. https://doi.org/10.1029/2004PA001071
  24. Maloletko A. M. (1976). Hollow-ridged relief of the Steppe Ob and Kulunda and its origin. Voprosy geografii Sibiri. V. 9. Tomsk: Tomsk University (Publ.). P. 124—141. (in Russ.)
  25. Manabe S., Broccoli A. J. (1990). Mountains and Arid Climates of Middle Latitudes. Science. V. 247. P. 192—195.
  26. Meshcheryakova O. A., Volvakh N. E., Kurbanov R. N. et al. (2022). The Upper Pleistocene loess-palaeosol sequence at Solonovka on the Cis-Altai plain, West Siberia — First luminescence dating results. Quat. Geochronology. V. 73. P. 101384. https://doi.org/10.1016/j.quageo.2022.101384
  27. Muhs D. R. (2013). Loess Deposits: Origins and Properties. Encyclopedia of Quat. Sci. P. 573—584. https://doi.org/10.1016/B978-0-444-53643-3.00145-X
  28. Muhs D. R., Bettis A. E. (2003). Quaternary loess-paleosol sequences as examples of climate-driven sedimentary extremes. In: Extreme depositional environments: Mega and members in geological time. Geological Society of America. Special Publication. V. 370. P. 53—74. https://doi.org/10.1130/0-8137-2370-1.53
  29. Petit J. R., Jouzel J., Raynaud D. et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. V. 399. P. 429—436. https://doi.org/10.1038/20859
  30. Petit J. R., Mounier L., Jouzel J. et al. (1990). Paleoclimatological and chronological implications of the Vostok core dust record. Nature. V. 343. № 6253. P. 56—58. https://doi.org/10.1038/343056a0
  31. Pinkhasov B. I. (1984). Neogen-chetvertichnye otlozheniya i noveishaya tektonika Yuzhnogo Priaral’ya i Zapadnyh Kyzylkumov (Neogene-Quaternary deposits and recent tectonics of the Southern Aral Sea and Western Kyzyl Kum). Tashkent: FAN (Publ.). 150 p. (in Russ.)
  32. Pospelova G. A., Gnibidenko Z. N. (1982) Magnetostratigraphic sections of Neogene and Quaternary deposits of North Asia and southeastern Europe and problems of their correlation. In: Geofizicheskie metody v regional’noi geologii. Novosibirsk: Nauka (Publ.). P. 76—94. (in Russ.)
  33. Pötter S., Lehmkuhl F., Weise J. et al. (2023). Spatiotemporal model for the evolution of a mega-yardang system in the foreland of the Russian Altai. Aeolian Res. V. 62. P. 100866. https://doi.org/10.1016/j.aeolia.2023.100866
  34. Prokopenko A. A., Karabanov E. B., Williams D. F. et al. (2001). Biogenic Silica Record of the Lake Baikal Response to Climatic Forcing during the Brunhes. Quat. Res. V. 55. P. 123—132. https://doi.org/10.1006/qres.2000.2212
  35. Smolyaninova L. G., Zykina V. S., Chirkin K. A. (2011). New magnetostratigraphic data and the position of the Matuyama-Brunhes boundary in the reference section Belovo (Ob steppe plateau). In: Paleomagnetizm i magnetizm gornykh porod. Materialy vserossiiskoi shkoly-seminara. Borok: GO “Borok” IFZ RAN (Publ.). P. 89—92. (in Russ.)
  36. Vangengeim E. A., Vislobokova I. A., Godina A. Ya. et al. (1993). On the Age of Mammalian Fauna from the Karabulak Formation of the Kalmakpai River (Zaisan Depression, Eastern Kazakhstan). Stratigraphy. Geological correlation. V. 1. № 2. P. 37—47. (in Russ.)
  37. Velichko А. А., Timireva, S.N. (2005). Western Siberia, the great Late-Glacial desert. Priroda. № 5. P. 54—62. (in Russ.)
  38. Volkov I. A. (1971). Pozdnechetvertichnaya subaeralʹnaya formatsiya (Late Quternary subaerial sedimentary association). Moscow: Nauka (Publ). 253 p. (in Russ.).
  39. Volkov I. A. (1976). Rolʹ eolovogo faktora v evolutsii rel´efa (The role of eolian factor in the topography evolution). Timofeev D. A. (Ed.). In: Problemy ekzogennogo rel’efoobrazovaniya. Kniga 1. (Problems of exogenic topography formation. Book 1). Moscow: Nauka (Publ.). P. 264—269.
  40. Volkov I. A. (1980). Cyclicity of formation of Quaternary subaerial sediments of the temperate belt and climate fluctuations. In: Ciklichnost’ formirovaniya subaeral’nykh porod. V. 457. Novosibirsk: Nauka (Publ.). P. 25—33. (in Russ.)
  41. Volkov I. A., Zykina V. S., Semyonov V. V. (1984). Lower boundary of the Quaternary system in the subaerial strata of West Siberia. In: Stratigrafiya pogranichnykh otlozhenii neogena i antropogena Sibiri. Novosibirsk: IGiG SB RAS (Publ.). С. 72—84. (in Russ.)
  42. Volvakh N. E. (2022). Lyuminestsentnaya geokhronologiya lessovo-pochvennoi posledovatel’nosti neopleistotsena yugo-vostoka Zapadno-Sibirskoi ravniny (Luminescent geochronology of the loess-soil sequence of the Neopleistocene of the southeast of the West Siberian Plain). PhD thesis. Novosibirsk: 23 p. (in Russ.)
  43. Volvakh N. E., Kurbanov R. N., Volvakh A. O. et al. (2021). The First Results of Luminescent Dating of Loess-Paleosol Series in the South of Western Siberia (Lozhok Reference Section). Izvestiya RAN. Seriya geograficheskaya. V. 85. № 2. P. 284—301. (in Russ.). https://doi.org/10.31857/S2587556621020151
  44. Volvakh N. E., Kurbanov R. N., Zykina V. S. et al. (2022). First high-resolution luminescence dating of loess in Western Siberia. Quat. Geochronology. V. 73. P. 101377. https://doi.org/10.1016/j.quageo.2022.101377
  45. Zander A., Frechen M., Zykina V. et al. (2003). Luminescence chronology of the Upper Pleistocene loess record at Kurtak in Middle Siberia. Quat. Sci. Rev. V. 22. P. 999—1010. https://doi.org/10.1016/S0277-379(03)00034-9
  46. Zazhigin V. S. (1980). Gryzuny pozdnego pliotsena i antropogena yuga Zapadnoi Sibiri (Late Pliocene and Anthropogene Rodents of the South of the Eastern Siberia). Moscow: Nauka (Publ.). 156 p. (in Russ.)
  47. Zykin V. S. (1982). New data on Neogene sequence near the city of Pavlodar. In: Problemy stratigrafii i paleogeografii pleistotsena Sibiri. Novosibirsk: Nauka (Publ.). P. 66—72. (in Russ.)
  48. Zykin V. S. (2012). Stratigrafiya i evolyutsiya prirodnoi sredy i klimata v pozdnem kainozoe yuga Zapadnoi Sibiri (Stratigraphy and evolution of environments and climate during Late Cenozoic in the Southern West Siberia). Novosibirsk: GEO (Publ.). 487 p. (in Russ.)
  49. Zykin V. S., Zazhigin V. S., Zykina V. S. (1995). Changes in the natural environment and climate in the early Pliocene of the south of the West Siberian Plain. Geologiya i geofizika. V. 36. № 8. P. 40—50. (in Russ.)
  50. Zykin V. S., Zykina V. S., Orlova L. A. (2003). Reconstruction of changes in the natural environment and climate of the Late Pleistocene in the south of Western Siberia according to the sediments of the Aksor Lake basin. Archaeology. Ethnology & Anthropology of Eurasia. № 4. P. 2—16. (in Russ.)
  51. Zykin V. S., Zykina V. S., Orlova L. A. et al. (2009). On the development of Lake Chany in the late Pleistocene-Holocene time. In: Geografiya — teoriya i praktika: sovremennye problemy i perspektivy. Barnaul: Altai university (Publ.). P. 95—98. (in Russ.)
  52. Zykin V. S., Zykina V. S., Smolyaninova L. G. et al. (2017). New Stratigraphic Data on the Quaternary Sediments in the Peschanaya River Valley, Northwestern Altai. In: Archaeology, Ethology and Antropology of Eurasia. V. 45. № 3. P. 3—16. https://doi.org/10.17746/1563-0110.2017.45.3.003-016
  53. Zykina V. S. (1986). Fossil soils — the basis for the division of Quaternary subaerial deposits of Western Siberia. In: Biostratigrafiya i paleoklimaty pleistotsena Sibiri. Novosibirsk: Nauka (Publ.). P. 115—121. (in Russ.)
  54. Zykina V. S., Krukover A. A. (1988). New data on the division and correlation of Quaternary deposits of the Pre-Altai Plain. In: Perspektivy razvitiya mineral’no-syr’evoi bazy Altaya. Ch. 1. Barnaul: Poligrafist (Publ.). P. 47—49. (in Russ.)
  55. Zykina V. S., Orlova L. A., Chekha V. P. (2000). Reconstruction of the natural environment and climate of the subaerial sequence of the Kurtak section. In: Paleogeografiya kamennogo veka. Korrelyatsiya prirodnykh sobytii i arkheologicheskikh kul’tur paleolita Severnoi Azii i sopredel’nykh territorii. Materialy Mezhdunarodnoi Konferentsii. Krasnoyarsk: Krasnoyarsk Pedagogical University (Publ.). P. 62—64. (in Russ.)
  56. Zykina V. S., Volkov I. A., Dergacheva M. I. (1981). Verkhnechetvertichnye otlozheniya i iskopaemye pochvy Novosibirskogo Priob’ya (Upper Quaternary deposits and fossil soils of the Novosibirsk Ob region). Moscow: Nauka (Publ.). 203 p. (in Russ.)
  57. Zykina V. S., Volkov I. A., Semenov V. V. (2000). Reconstruction of Neopleistocene climates in West Siberia based on study of Belovo key section. In: Problemy rekonstruktsii klimata i prirodnoi sredy golotsena i pleistotsena Sibiri. Novosibirsk: Institute of Archaeology and Ethnography SB RAS Press (Publ.). P. 229—249. (in Russ.)
  58. Zykina V. S., Zykin V. S. (2003). Pleistocene warming stages in Southern West Siberia: soils, environment, and climate evolution. Quat. Int. V. 106—107. P. 233—243. https://doi.org/10.1016/S1040-6182(02)00175-1
  59. Zykina V. S., Zykin V. S. (2008). The loess-soil sequence of the Brunhes chron from West Siberia and its correlation to global climate records. Quat. Int. V. 179. P. 171—175. https://doi.org/10.1016/j.quaint.2007.10.010
  60. Zykina V. S., Zykin V. S. (2012). Lessovo-pochvennaya posledovatelʹnoctʹ i evolyutsiya prirodnoi sredy i klimata Zapadnoi Sibiri v pleistotsene (Loess-soil sequence and environment and climate evolution of West Siberia in Pleistocene). Novosibirsk: GEO (Publ.). 478 p. (in Russ.)
  61. Zykina V. S., Zykin V. S., Volvakh A. O. et al. (2019). Loess-Paleosol Sequence at the Krasnogorskoye Sectin, the Low-Hill Zone of the Northtastern Altai Mountains. Archaeology, Ethnology and Anthropology of Eurasia. V. 47. № 1. P. 3—14. https://doi.org/10.17746/1563-0100.2019.47.1.003-014
  62. Zykina V. S., Zykin V. S., Volvakh N. E. et al. (2021). New data on the chronostratigraphy of the Upper Pleistocene loess-soil series in Southwestern Siberia. Doklady Earth Sci. V. 500. P. 870—874. https://doi.org/10.1134/S1028334X21100202

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Stratigraphic scheme of the loess-soil sequence of the Pleistocene of Siberia (Zykina, Zykin, 2012, with refinement). Soil horizons: 1 — humus soil horizons, 2 — illuvial soil horizons; 3 — cryogenic formations; 4 — loess; 5 — stage warming; 6 — colder and shorter than the Holocene; intervals: 7 — interval having 14C date, 8 — interval having luminescent dates; ПК — pedocomplex; Л — loess.

Baixar (771KB)
3. Fig. 2. Deflationary relief of the time of the last glaciation in the western part of the Kulunda Plain with a large number of small rounded basins blown by the wind and filled with water in Holocene (source: ArcGIS Earth).

Baixar (686KB)
4. Fig. 3. Crescent-shaped, transverse to the prevailing winds, eolian ridges (grivas) on the lee shores of lake basins, composed of material taken out of them, and a longitudinal griva on the southeastern shore of the Lake Sargul.

Baixar (209KB)
5. Fig. 4. The grivas relief of the Chany depression of the time of the last glaciation, composed of low longitudinal ridges (grivas) to the southwest winds.

Baixar (528KB)
6. Fig. 5. Geological section of the southeastern flank of the Chany Lake basin. 1 — loam; 2 — solifluction deposits; 3 — sand; 4 — silt; 5 — ice wedge casts; 6 — buried soil; 7 — aeolian deposits; 8 — lacustrine deposits.

Baixar (267KB)
7. Fig. 6. Digital elevation model of the Uvals of the Priobskoye Loess Plateau. Ouvals (local name for crests) are ridges elongated in a straight line from the southwest to the northeast, almost parallel to each other (outlined by the red line). The length of the ouvals reaches 120—350 km, and the width is from 15 to 70 km. They are separated by wide rectilinear hollows from 8 to 20 km wide; relative height of ouvals above hollows is from 5 to 100 m. The map is based on SRTM DEM with 30 m resolution (source: https://opentopography.org/) and was designed in ArcGIS Pro.

Baixar (473KB)
8. Fig. 7. Geological structure of the Belovo section (Zykina, Zykin, 2012). 1 — loam; 2 — sandy silt; 3 — sandy loam; 4 — sand; 5 — indistinctly layered sand; 6 — fossil soil; 7 — locations of transects; pedocomplexes: 8 — Shadrinsky, 9 — Charyshsky, 10 — Volodarsky, 11 — Belovsky, 12 — Evsinsky, 13 — Iskitimsky, 14 — Koinikhinsky, 15 — Berdsky.

Baixar (489KB)
9. Fig. 8. Structure of the lower soil of the Berdsk pedocomplex (MIS5e): (а) — Toguchin Quarry, (б) — Lozhok Quarry. Loam: 1 — strongly humusified loam, 2 — moderately humusified loam, 3 — slightly humusified loam, 4 — loess-like loam; burrows of shrews: 5 — filled with loess-like loam, 6 — filled with humusified loam; 7 — cracks of desiccation; 8 — pseudomycelium and spots of white-eye weevil; 9 — vertical fracturing; 10 — rubble.

Baixar (520KB)
10. Fig. 9. Correlation of sections of the loess-soil sequence of the Pleistocene of the Novosibirsk region. Soil horizons: 1 — soil humus horizons, 2 — illuvial horizon; 3 — silt; 4 — sandy silt; 5 — Mn spots; 6 — carbonates (а) and carbonate concretions (б); 7 — neoplasms of iron; 8 — gleying; 9 — drying cracks (а) and humus streaks (б); 10 — Fe–Mn concretions; 11 — fine crushed stone and slate plates; 12 — gravel; 13 — krotovinas; 14 — weathering crust; 15 — limestone.

Baixar (575KB)
11. Fig. 10. Structure of the lower soil of the Iskitim pedocomplex (MIS 3) in the Lozhok quarry. For the symbols, see fig. 8.

Baixar (492KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024