Rock magnetic methods in the study of the loess-soil series of Eastern Siberia
- Authors: Kazansky A.Y.1,2, Matasova G.G.2,3, Shchetnikov A.A.2,3,4, Filinov I.V.2,3,4
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Geology
- Geological Institute RAS
- Institute of the Earth’s Crust SB RAS
- Vinogradov Institute of Geochemistry SB RAS
- Issue: Vol 55, No 2 (2024)
- Pages: 63—85
- Section: LOESS-SOIL SERIES OF NORTHERN EURASIA
- URL: https://medjrf.com/2949-1789/article/view/660706
- DOI: https://doi.org/10.31857/S2949178924020036
- EDN: https://elibrary.ru/POGZIG
- ID: 660706
Cite item
Abstract
Rock magnetic methods complement geological and granulometric studies of subaerial deposits, allowing to solve relevant and interesting problems in terms of paleogeography. The magnetic characteristics are numerical and provide a reasonable basis for a correct comparison of subaerial deposits among themselves, for a more detailed stratigraphic dissection of sediments and specifying their genesis, for the identification of marker horizons, and for the correlation of the data of different methods. The paper discusses the main mechanisms of formation of the magnetic properties of loess-soil series in different regions (“Chinese” and “Alaskan”) and peculiarities in the interpretation of rock magnetic parameters within the framework of different mechanisms. The paleoclimatic informativity of rock magnetic parameters in different physical-geographic settings is analyzed. The fundamental differences in the formation of the magnetic properties of the loess-soil series of Siberia (“Siberian” mechanism) are shown and the principles of paleoclimatic interpretation of rock magnetic data on the basis of more than 40 sections of subaerial complexes of southern Western, Preenisei and Eastern Siberia are developed. Based on changes in rock magnetic parameters, the trend of climatic changes during the quaternary period, which consists in the change from the “pedogenic” mechanism to the “Siberian” one and then to the “Alaskan” one, was revealed using the example of subaerial sediments of Eastern Siberia. This difference in mechanisms may serve as a criterion for diagnosing subaerial deposits of Eopleistocene age.
Full Text
##article.viewOnOriginalSite##About the authors
A. Yu. Kazansky
Lomonosov Moscow State University, Faculty of Geology; Geological Institute RAS
Author for correspondence.
Email: kazansky_alex@mail.ru
геологический факультет
Russian Federation, Moscow; MoscowG. G. Matasova
Geological Institute RAS; Institute of the Earth’s Crust SB RAS
Email: kazansky_alex@mail.ru
Russian Federation, Moscow; Irkutsk
A. A. Shchetnikov
Geological Institute RAS; Institute of the Earth’s Crust SB RAS; Vinogradov Institute of Geochemistry SB RAS
Email: kazansky_alex@mail.ru
Russian Federation, Moscow; Irkutsk; Irkutsk
I. V. Filinov
Geological Institute RAS; Institute of the Earth’s Crust SB RAS; Vinogradov Institute of Geochemistry SB RAS
Email: kazansky_alex@mail.ru
Russian Federation, Moscow; Irkutsk; Irkutsk
References
- Akram H., Yoshida M. (1997). Ultra-fine magnetite/maghemite and their magnetic granulometry in the Late Pleistocene loess-paleosol deposits, Haro River Area, Attock Basin, Pakistan. Proceedeings of Inter-PARMAGS Seminar (1996). Paleomagnetism of Collision Belts, Recent Progress in Geomagnetism, Rock Magnetism and Paleomagnetism. № 1. Р. 153—197.
- Alexeeva N. V., Erbajeva M. A. (2005). Changes in the fossil mammal faunas of Western Transbaikalia during the Pliocene–Pleistocene boundary and the Early–Middle Pleistocene transition. Quat. Int. V. 131. № 1. P. 109—115. https://doi.org/10.1016/j.quaint.2004.07.002
- Alexeeva, N.V. (2005). Evolyutsiya prirodnoi sredy Zapadnogo Zabaikal’ya v pozdnem kainozoe (po dannym fauny melkikh mlekopitayushchikh) [Environmental Evolution of Late Cenozoic of West Transbaikalia (Based on Small Mammal Fauna)]. Moscow: GEOS (Publ.). 14 p. (in Russ.)
- An Z. S., Kukla G. J., Porter S. C. et al. (1991). Magnetic susceptibility evidence of Monsoon variation on the Loess Plateau of Central China during the last 130 000 years. Quat. Res. V. 36. P. 29—36. https://doi.org/10.1144/SP342.8
- Banerjee S. K., Hunt C. P., Liu X. M. (1993). Separation of local signals from the regional paleomonsoon record of the Chinese loess plateau: A rock-magnetic approach. Geophys. Res. Lett. № 20. Р. 843—846. https://doi.org/10.1029/93GL00908
- Bazarov D. B. (1986). Kainozoi Pribaikal’ya i Zapadnogo Zabaikal’ya (Cenozoic of the Baikal Region and Western Transbaikalia). Novosibirsk: Nauka (Publ.). 182 p.
- Bazarov D. B., Erbaeva M. A., Rezanov I. N. (1976). Geologiya i fauna opornykh razrezov antropogena Zapadnogo Zabaikal’ya (Geology and fauna of reference sections of the Anthropogenic of Western Transbaikalia). Moscow: Nauka (Publ.). 148 p.
- Beget J. E., Stone D. B., Hawkins D. B. (1990). Paleoclimatic forcing of magnetic susceptibility variations in Alaskan loess during the late Quaternary. Geology. V. 18. № 1. P. 40—43. https://doi.org/10.1130/0091-7613(1990)018<0040: pfomsv>2.3.co;2
- Berger A. (1988). Milankovitch theory and climate. Rev. Geophys. V. 26. P. 624—657. https://doi.org/10.1029/RG026i004p00624
- Bidegain J. C., Evans M. E., van Velzen A. J. (2005). A magnetoclimatological investigation of Pampean loess, Argentina. Geophys. J. Int. V. 160. № 1. Р. 55—62. https://doi.org/10.1111/j.1365-246X.2004.02431.x
- Bosken J., Obreht I., Zeeden C. et al. (2019). High-resolution paleoclimatic proxy data from the MIS3/2 transition recorded in northeastern Hungarian loess. Quat. Int. V. 502. Part A. P. 95—107. https://doi.org/10.1016/j.quaint.2017.12.008
- Brookfield M. E. (2011). Aeolian processes and features in cool climates. Geological Society, London, Special Publications. P. 241—258. https://doi.org/10.1144/SP354.16
- Chlachula J., Evans M. E., Rutter N. W. (1998). A magnetic investigation of a Late Quaternary loess/palaesol record in Siberia. Geophys. J. Int. V. 132. P. 128—132. https://doi.org/10.1046/j.1365—246x.1998.00399.x
- Chlachula J., Rutter N. W., Evans M. E. (1997). A late Quaternary loess-paleosol record at Kurtak, southern Siberia. Canadian J. of Earth Sci. V. 34. P. 679—686. https://doi.org/10.1139/e17-054
- Day R., Fuller M., Schmidt V. A. (1977). Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys. Earth Planet. Int. V. 13. P. 260—267. https://doi.org/10.1016/0031-9201(77)90108-X
- Dearing J., Liningstone I., Zhou L. P. (1996). A late Quaternary magnetic record of Tunisian loess and its climatic significance. Geophys. Res. Lett. V. 23. № 2. P. 189—192. https://doi.org/10.1029/95GL03132
- Dearing J. A., Dann R. J.L., Hay K. et al. (1996). Frequency-dependent susceptibility measurements of environmental materials. Geophys. J. Int. V. 124. P. 228—240. https://doi.org/10.1111/j.1365-246X.1996.tb06366.x
- Deng C., Zhu R., Verosub K. L. et al. (2004). Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr. J. of Geophys. Res.: Solid Earth. V. 109. Iss. B1. 01103. https://doi.org/10.1029/2003JB002532
- Ding Z. L., Ranov V., Yang S. L. et al. (2002). The loess record in southern Tajikistan and correlation with Chinese loess. Earth Planet. Sci. Lett. V. 200. P. 387—400. https://doi.org/10.1016/S0012-821X(02)00637-4
- Dunlop D. J. (2002). Theory and application of the Day plot (M-rs/M-s versus H-cr/H-c). 1. Theoretical curves and tests using titanomagnetite data. J. of Geophys. Res.: Solid Earth. V. 107. Iss. B3. P. 2046—2067. https://doi.org/10.1029/2001JB000487
- Erbajeva M. A. (1998). Late Pliocene Itansinian faunas in Western Transbaikalia. In: The Dawn of the Quaternary. Mededelingen Nederlands Instituut voor Toegepaste Geowettenschappen TNO. V. 60. P. 417—430.
- Erbajeva M. A., Alexeeva N. V. (2000). Pliocene and Pleistocene biostratigraphic succession of Transbaikalia with emphasis on small mammals. Quat. Int. V. 68—71. P. 67—75. https://doi.org/10.1016/S1040-6182(00)00033-1
- Erbajeva M. A., Shchetnikov A. A., Kazansky A. Y. et al. (2019). The New Pleistocene Ulan-Zhalga Key Section in Western Transbaikalia. Doklady Earth Sci. V. 488. № 3. P. 1035—1038. https://doi.org/10.1134/S1028334X1909023X
- Evans M. E., Heller F. (2003). Environmental Magnetism. New York: Academic Press. 299 p.
- Evans T. E., Heller F. (1994). Magnetic enhancement and palaeoclimate: study of a loess/paleosol couplet across the Loess Plateau of China. Geophys. J. Int. V. 117. P. 257—264. https://doi.org/10.1111/j.1365-246X.1994.tb03316.x
- Feng Z.-D., Wang H. B., Olson C. et al. (2004). Chronological discord between the last interglacial paleosol (S1) and its parent material in the Chinese Loess Plateau. Quat. Int. V. 117. № 1. P. 17—26. https://doi.org/10.1016/s1040-6182(03)00112-5
- Forster Th., Heller F., Evans M. E. et al. (1996). Loess in the Czech Republic: magnetic properties and paleoclimate. Stud. Geophys. Geod. V. 40. P. 243—261. https://doi.org/10.1007/BF02300741
- Galanin A. A. Late Quaternary sand covers of Central Yakutia (Eastern Siberia) structure, facies and paleoenvironment significance. Earth’s Cryosphere. Iss. XXV. № 1. P. 3—34. (in Russ.) https://doi.org/10.15372/KZ20210101
- Golubtsov V. A., Ryzhov Yu.V., Kobylkin D. V. (2017). Pochvoobrazovanie i osadkonakoplenie v Selenginskom srednegor’e v pozdnelednikov’e i golotsene (Late Glacial and Holocene Soil Formation and Sedimentation in the Selenga Middle Mountains). Irkutsk: Institute of Geography SB RAS (Publ.). 139 p. (in Russ.)
- Guzhikov A. Yu., Shkatova V. K. (2016). On Amendments to the General Magnetostratigraphic Polarity Scale of the Quaternary System. In: Postanovleniya Mezhvedomstvennogo stratigraficheskogo komiteta i ego postoyannykh komissii. V. 44. SPb.: VSEGEI (Publ.). P. 35—36. (in Russ.)
- Hao Q., Guo Z. (2005). Spatial variations of magnetic susceptibility of Chinese loess for the last 600 kyr: Implications for monsoon evolution. J. Geophys. Res. V. 110. B12101. https://doi.org/10.1029/2005JB003765.
- Hayward R. K., Lowell T. V. (1993). Variations in loess accumulation rates in the mid-continent, United States, as reflected by magnetic susceptibility. Geology. V. 21. P. 821—824. https://doi.org/10.1130/0091-7613(1993)021<0821: VILARI>2.3.CO;2
- Heller F., Liu T. (1984). Magnetism of Chinese loess deposits. Geophys. J. Int. V. 77. № 1. P. 125—141. https://doi.org/10.1111/j.1365-246x.1984.tb01928.x
- Hunt C. P., Banerjee S. K., Han J. et al. (1995). Rock-magnetic proxies of climate change in the loess-palaeosol sequences of the western Loess Plateau of China. Geophys. J. Int. V. 123. P. 232—244. https://doi.org/10.1111/j.1365-246X.1995.tb06672.x
- Hus J. J., Han J. (1992). The contribution of loess magnetism to the retrieval of past global changes — some problem. Phys. Earth Planet. Int. V. 70. № 3—4. P. 154—168. https://doi.org/10.1016/0031-9201(92)90178-X
- Ivanova V. V., Erbajeva M. A., Shchetnikov A. A. et al. (2019). Tologoi key section: A unique archive for Pliocene-Pleistocene paleoenvironment dynamics of transbaikalia, bikal rift zone. Quat. Int. V. 519. № 10. P. 58—73. https://doi.org/10.1016/j.quaint.2018.11.004
- Jie Chen J., Stevens T., Yang T. et al. (2021). Revisiting Late Pleistocene Loess – Paleosol Sequences in the Azov Sea Region of Russia: Chronostratigraphy and Paleoenvironmental Record. Front. Earth Sci. V. 9. 808157. https://doi.org/10.3389/feart.2021.808157
- Kazansky A. Yu., Kravchinsky V. A., Zykina V. S. et al. (1998). Possibilities of magnetic methods for revealing the climatic signal in loess-soil sections of Siberia. In: Problemy rekonstruktsii klimata i prirodnoi sredy golotsena i pleistotsena Sibiri. Novosibirsk: Imstitut arheologii i etnografii (Publ.). P. 191—202. (in Russ.).
- Kazansky A. Y., Shchetnikov A. A., Matasova G. G. et al. (2022). Palaeomagnetic data from the late Cenozoic Tagay section (Olkhon island, Baikal region, Eastern Siberia). Palaeobiodiversity and Palaeoenvironments. V. 102. № 4. P. 943—967. https://doi.org/10.1007/s12549-022-00559-7
- Kazansky A. Yu., Matasova G. G., Shchetnikov A. A. et al. (2022a). The Kitoysky most section is a new type of the Upper Quaternary deposits of Predbaikalia. In: Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu). V. 20. Irkutsk: IZK SB RAS (Publ.). P. 117—119 (in Russ).
- Kazansky A. Yu., Matasova G. G., Shchetnikov A. A. et al. (2022b). Results of comprehensive studies of the Igetei reference section (Middle Upper Neopleistocene, Predbaikalia). In: Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu). V. 20. Irkutsk: IZK SB RAS Irkutsk (Publ.). P. 119—122. (in Russ).
- Költringer C., Stevens T., Bradák B. et al. (2021). Enviromagnetic study of Late Quaternary environmental evolution in Lower Volga loess sequences, Russia. Quat. Res. V. 103. P. 49—73. https://doi.org/10.1017/qua.2020.73
- Kukla G., Heller F., Liu X. M. et al. (1988). Pleistocene climates in China dated by magnetic susceptibility. Geology. V. 16. P. 811—814. https://doi.org/10.1130/0091-7613(1988)016<0811: PCICDB>2.3.CO;2
- Laag C., Hambach U., Zeeden C. et al. (2021). A Detailed Paleoclimate Proxy Record for the Middle Danube Basin Over the Last 430 kyr: A Rock Magnetic and Colorimetric Study of the Zemun Loess-Paleosol Sequence. Front. Earth Sci. V. 9. 9:600086. https://doi.org/10.3389/feart.2021.600086
- Lisiecki L. E., Raymo M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography. V. 50. № 1. PA1003. https://doi.org/10.1029/2004pa001071
- Liu X. M., Shaw J., Liu T. S. et al. (1992) Magnetic mineralogy of Chinese loess and its significance. Geophys. J. Int. V. 108. P. 301—308.https://doi.org/10.1111/j.1365-246X.1992.tb00859.x
- Liu X. M., Shaw J., Liu T. S. et al. (1993). Magnetic susceptibility of the Chinese loess-paleosol sequence: environmental change and pedogenesis. J. Geol. Soc. V. 150. P. 583—588. https://doi.org/10.1144/gsjgs.150.3.0583
- Maher B. A., Taylor R. M. (1988). Formation of ultrafine-grained magnetite in soil. Nature. V. 336. P. 368—370. https://doi.org/10.1038/336368a0
- Maher B. A., Thompson R. (1991). Mineral magnetic record of the Chinese loess and palaeosols. Geology. V. 19. P. 3—6. https://doi.org/10.1130/0091-7613(1991)019<0003: MMROTC>2.3.CO;2
- Maher B. A. (2011). The Magnetic Properties of Quaternary Aeolian Dusts and Sediments, and Their Palaeoclimatic Significance. Aeolian Res. V. 3. P. 87—144. https://doi.org/10.1016/j.aeolia.2011.01.005
- Martinson D. G., Pisias N. G., Hays J. D. et al. (1987). Age dating and the orbital theory of the Ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat. Int. V. 27. P. 1—29. https://doi.org/10.1016/0033-5894(87)90046-9 Berger, 1988;
- Matasova G., Petrovsky E., Jordanova N. et al. (2001). Magnetic study of Late Pleistocene loess/palaeosol sections from Siberia: palaeoenvironmental implications. Geophys. J. Int. V. 147. № 2. P. 367—380. https://doi.org/10.1046/j.0956-540X.2001.01544.x
- Matasova G. G., Kazansky A. Yu, Zykina V. S. (2003). Superposition of Alaskan and Chinese models of paleoclimate records in magnetic properties of Upper and Middle Neopleistocene deposits in southern West Siberia. Russian Geology and Geophysics. V. 44. № 7. P. 607—619
- Matasova G. G., Kazansky A. Yu. (2004). Magnetic properties and magnetic fabrics of Pleistocene loess/palaeosol deposits along west-central Siberian transect and their palaeoclimatic implications. In: Magnetic Fabric: Methods and Applications. Geological Society, London, Special Publications. V. 238. P. 145—173. https://doi.org/10.1144/GSL.SP.2004.238.01.11
- Matasova G. G., Kazansky A. Yu. (2005). Contribution of paramagnetic minerals to magnetic properties of loess-soil deposits in Siberia and its paleoclimatic implications. Physics of the Solid Earth. V. 41. № 9. P. 758—766.
- Matasova G. G., Kazansky A. Y., Shchetnikov A. A. et al. (2020). New rock- and paleomagnetic data on quaternary deposits of the Tologoi key section, western Transbaikalia, and their paleoclimatic implications. Physics of the Solid Earth. V. 56. № 3. P. 392—412. https://doi.org/10.1134/S1069351320030052
- Matasova G. G., Kazansky A. Yu., Shchetnikov A. A. et al. (2023). The Kuytun Valley as an Exogeodynamic Test Site for the Application of Methodology for Interdisciolinary Research in the Sedimentation Settings of Loess-like Cover Deposits in the Late Pleistocene Transbaikalia. Geodynamics and Tectonophysics. V. 14 № 3. Article 0303. https://doi.org/10.5800/GT-2023-14-3-0703 (in Russ.)
- Mats V. D., Pokatilov A. G., Popova S. M. et al. (1982). Pliocen i pleistocen Srednego Baikala (Pliocene and Pleistocene of the Middle Baikal). Novosibirsk: Nauka (Publ.). 195 p. (in Russ.).
- Medvedev G. I., Vorob’eva G.A. (1987). Igetei, a reference section of Upper Pleistocene subaerial deposits and Paleolithic cultures in southern Eastern Siberia. In: Geologiya kainozoya yuga Vostochnoi Sibiri. Irkutsk: Irkutsk Universitet (Publ.). P. 20—21. (in Russ.)
- Medvedev G. I., Saveliev N. A., Svinin V. V. (Eds.). (1990). Stratigrafiya, paleogeografiya i arkheologiya yuga Srednei Sibiri: K XIII Kongressu INKVA (KNR, 1991) [Stratigraphy, Paleogeography, and Archaeology in the South of Middle Siberia: Toward the XIIIth Congress of the INKVA (PRC, 1991)]. Irkutsk: Irkutsk Universitet (Publ.) 165 p. (in Russ.)
- Meng X., Derbyshire E., Kemp R. A. (1997). Origin of the magnetic susceptibility signal in Chinese loess. Quat. Sci. Rev. V. 16. P. 833—839. https://doi.org/10.1016/S0277-3791(97)00053-X
- Milanković M. (1930). Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen. In: Handbuch der Klimatologie. Bd. 1. Berlin: Borntraeger. S. 176.
- Nawrocki J. (1992). Magnetic Susceptibility of Polish loesses and loess-like sediments. Geol. Zb. Geol. Carpathica. V. 43. P. 179—180.
- Nawrocki J., Wojcik A., Bogucki A. (1996). The magnetic susceptibility record in the Polish and western Ukrainian loess-palaeosol sequences conditioned by palaeoclimate. Boreas. V. 25. № 3. P. 161—169. https://doi.org/10.1111/j.1502-3885.1996.tb00845.x
- Necula C., Dimofte D., Panaiotu C. (2015). Rock magnetism of a loess-palaeosol sequence from the western Black Sea shore (Romania). Geophys. J. Int. V. 202. № 3. P. 1733—1748. https://doi.org/10.1093/gji/ggv250)
- Pokatilov A. G. (2004). Paleontologiya i stratigrafiya kainozoya yuga Vostochnoi Sibiri i sopredel’nykh territorii (Paleontology and stratigraphy of the Cenozoic of the south of East Siberia and adyacent territories). Irkutsk: IrGTU (Publ.). 275p. (in Russ.)
- Rolph T. C., Shaw J., Derbyshire E. et al. (1989). A detailed geomagnetic record from Chinese loess. Phys. Earth. Planet. Int. V. 56. P. 151—164. https://doi.org/10.1016/0031-9201(89)90044-7
- Schellenberger A., Heller F., Veit H. (2003). Magnetostratigraphy and magnetic susceptibility of the Las Carreras loess–paleosol sequence in Valle de Tafı́, Tucumán, NW-Argentina. Quat. Int. V. 106—107. P. 159—167. https://doi.org/10.1016/S1040-6182(02)00170-2
- Shackleton N. J., Berger A., Peltier W. R. (1990). An alternative astronomical calibration of the lower Pleistocene timescale based on ODP site 677. Transactions of the Royal Society of Edinburgh, Earth Science. V. 81. P. 251—261. https://doi.org/10.1017/s026359330002078
- Sun J., Liu T. (2000). Multiple origins and interpretations of the magnetic susceptibility signal in Chinese wind-blown sediments. Earth Planet. Sci. Lett. V. 180. P. 287—296. https://doi.org/10.1016/S0012-821X(00)00175-8
- Sun J. M., Kohfeld K. E., Harrison S. P. (2000). Records of aeolian dust deposits on the Chinese Loess Plateau during the Late Quaternary. Jena, Germany: Max-Planck — Institute for Biogeochemistry. 318 p.
- Taylor S. N., Lagroix F. (2014). Mineral magnetic analysis of the Upper Pleniglacial loess-palaeosol deposits from Nussloch (Germany): An insight into local environmental processes. Geophys. J. Int. V. 199. Р. 1463—1480.
- Velichko A. F. (Ed.) (2002). Dinamika landshaftnykh komponentov i vnutrennikh morskikh basseinov Severnoi Evrazii za poslednie 13 000 let. Atlas-monografiya (Dynamics of landscape components and inland marine basins of Northern Eurasia over the past 13,000 years. Atlas-Monograph). Moscow: GEOS (Publ.). 231 p.
- Vidic N. J., TenPas J.D., Verosub K. L. et al. (2000). Separation of pedogenic and lithogenic components of magnetic susceptibility in the Chinese loess/palaeosol sequence as determined by the CBD procedure and a mixing analysis. Geophys. J. Int. V. 142. P. 551—562. https://doi.org/10.1046/j.1365-246x.2000.00178.x.
- Vlag P. A., Oches E. A., Banerjee S. K. et al. (1999). The paleoenvironmental-magnetic record of the Gold Hill Steps loess section in central Alaska. Phys. Chem. Earth. V. 24. № 9. P. 779—783. https://doi.org/10.1016/S1464-1895(99)00114-3
- Vlaminck S., Kehl M., Rolf C. et al. (2018). Late Pleistocene dust dynamics and pedogenesis in Southern Eurasia — Detailed insights from the loess profile Toshan (NE Iran). Quat. Sci. Rev. V. 180. № 15. P. 75—95. https://doi.org/10.1016/j.quascirev.2017.11.010
- Volkov. I.A. (1971). Pozdnechetvertichnaya subaeral’naya formatsiya (Late Quaternary Subaerial Formation). Mоscow: Nauka (Publ.). 254 p. (in Russ.)
- Zhdanova A. I., Kazansky A. Yu., Zol’nikov I.D. et al. (2007). Application of geological and petromagnetic methods to facies-genetic division of subaerial deposits in the Ob’ region near Novosibirsk (Ogurtsovo key section). Russian Geology and Geophysics. V. 48. № 4. P. 349—360. https://doi.org/10.1016/j.rgg.2007.03.003
- Zhu R. X., Matasova G., Kazansky A. et al. (2003). Rock magnetic record of the last glacial-interglacial cycle from the Kurtak loess section, southern Siberia. Geophys. J. Int. V. 152. № 2. P. 335—343. https://doi.org/10.1046/j.1365-246X.2003.01829.x
- Zhu Rixiang, Kazansky A., Matasova G. et al. (2000). Rock-magnetic investigation of Siberia loess and its implication. Chin. Sci. Bull. V. 45. № 23. P. 2192—2197. https://doi.org/10.1007/BF02886328
Supplementary files
