Pingo-like features in the pechora sea: conditions, origin and stages of development

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Using the results of multibeam echo sounding and seismic profiling performed during 2018—2019 on the R/V “Akademik Nikolay Strakhov” and all previously published data, a conceptual scheme of the pingo-like feature formation on the shelf of the Pechora Sea (south-eastern part of the Barents Sea between the islands of Kolguev and Vaygach) was developed. During interpreting the genesis of the bottom topography at a key-site with an area of about 12 km2, both new geophysical data obtained by the authors and previously published drilling materials were used. It has been established that formation of pingo-like features starts in the presence of submarine permafrost and subzero temperature of bottom waters under the influence of the fluid flow (degassing). Pingo-like feature development begins due to the formation of zones of abnormally high reservoir pressure below submarine permafrost as a result of vertical migration of fluids. The grouth of a pingo-like feature begins from the formation of a roll-like rise of the bottom due to the extrusion of frozen clayey strata to the near-surface part of the section. Subsequently, as a result of disruption of the continuity and partial thawing of permafrost, the growth of a pingo-like feature, which is essentially a mud volcanic structure, begins on the arch of the uplift. Fluid flow within a vertical channel up to the summit crater may be accompanied by freezing of the clayey strata as a result of the throttling effect. Mud flowing from the summit crater can freeze on the slopes of a pingo-like feature as a result of cooling of the fresh water contained in them under conditions of subzero bottom temperatures. A growth of the mud volcanic structure leads to a decrease in pressure near the base of submarine permafrost, that gradually thaws under the influence of fluid flow. This process leads to the gradual subsidence of roll-like rise and the appearance of compensation depressions. Based on the results of repeated monitoring of gas manifestations in water, it was established that more than half of the pingo-like features are currently active channels for the migration of fluids from the subsurface to the bottom surface and into the water column.

作者简介

E. Eremenko

Geological Institute of RAS; Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: eremenkoeaig@gmail.com

Faculty of Geography

俄罗斯联邦, Moscow; Moscow

A. Kokhan

Geological Institute of RAS

Email: eremenkoeaig@gmail.com
俄罗斯联邦, Moscow

E. Moroz

Geological Institute of RAS

Email: eremenkoeaig@gmail.com
俄罗斯联邦, Moscow

A. Denisova

Geological Institute of RAS; Lomonosov Moscow State University

Email: eremenkoeaig@gmail.com

Faculty of Geography

俄罗斯联邦, Moscow; Moscow

S. Sokolov

Geological Institute of RAS

Email: eremenkoeaig@gmail.com
俄罗斯联邦, Moscow

A. Mutovkin

Shirshov Institute of Oceanology of RAS

Email: eremenkoeaig@gmail.com
俄罗斯联邦, Moscow

参考

  1. Atlas: geology and minerals of the Russian shelves (Atlas: geologija i poleznye iskopaemye shel’fov Rossii). (2004). Moscow: GIN RAN (Publ.). 108 p. (in Russ.)
  2. Blasco S., Bennett R., Brent T. et al. (2013). 2010 State of Knowledge: Bufort Sea seabed geohazards associated with offshore hydrocarbon development. Geol. Surv. Can. Open File 6989. 340 p. https://doi.org/10.4095/292616
  3. Bogoyavlensky V., Kishankov A., Yanchevskaya A. et al. (2018). Forecast of Gas Hydrates Distribution Zones in the Arctic Ocean and Adjacent Offshore Areas. Geosciences. V. 8. № 12. 453. https://doi.org/10.3390/geosciences8120453
  4. Bondarev V. N., Rokos S. I., Kostin D. A. i dr. (2002). Sub-permafrost gas accumulations in the upper part of the sedimentary cover of the Pechora Sea. Geologija i geofizika. Iss. 43. № 7. P. 587—598. (in Russ.)
  5. Denisova A. P., Moroz E. A., Eremenko E. A. et al. (2022). Signs of degassing within the glacial shelf in the north-eastern part of the Barents Sea. In: Rel’ef i chetvertichnye obrazovaniya Arktiki, Subarktiki i Severo-Zapada Rossii. Vyp. 9. Saint-Petersburg: VNIIOkeangeologija im. I. S. Gramberga (Publ.). P. 78—86. https://doi.org/10.24412/2687-1092-2022-9-78-86/. (in Russ.)
  6. Diak M., Böttcher M. E., Ehlert von Ahn C. M. et al. (2023). Permafrost and groundwater interaction: current state and future perspective. Front. Earth Sci. V. 11. https://doi.org/10.3389/feart.2023.1254309
  7. Frederick J. M., Buffett B. A. (2016). Submarine groundwater discharge as a possible formation mechanism for permafrost-associated gas hydrate on the circum-Arctic continental shelf. J. Geophys. Res. Solid Earth. V. 121. Iss. 3. P. 1383—1404. https://doi.org/10.1002/2015JB012627.
  8. Frederick J. M., Buffett B. A. (2015). Effects of submarine groundwater discharge on the present-day extent of relict submarine permafrost and gas hydrate stability on the Beaufort Sea continental shelf. J. Geophys. Res.: Earth Surf. V. 120. Iss. 3. https://doi.org/10.1002/2014JF003349
  9. Grob H., Riedel M., Duchesne M. J. et al. (2023). Revealing the extent of submarine permafrost and gas hydrates in the Canadian Arctic Beaufort Sea using seismic reflection indicators. Geochem., Geophys., Geosyst. V. 24. Iss. 5. e2023GC010884. https://doi.org/10.1029/2023GC010884
  10. Gwiazda R., Paull C. K., Dallimore S. R. et al. (2018). Freshwater seepage into sediments of the shelf, shelf edge, and continental slope of the Canadian Beaufort Sea. Geochem., Geophys., Geosyst. V. 19. Iss. 9. P. 3039—3055. https://doi.org/10.1029/2018GC007623
  11. Hant J. (1982). Geokhimiya i geologiya nefti i gaza (Geochemistry and geology of oil and gas). Moscow: MIR (Publ.). 706 p. (in Russ.)
  12. Kokhan A. V., Moroz E. A., Eremenko E. A. et al. (2022). Morphology of pingo-like features on the shelf of the Pechora and Kara seas as an indicator of their age and dynamics. In: Rel’ef i chetvertichnye obrazovaniya Arktiki, Subarktiki i Severo-Zapada Rossii. Vyp. 9. Saint-Petersburg: VNIIOkeangeologija im. I. S. Gramberga (Publ.). P. 143—148. https://doi.org/10.24412/2687-1092-2022-9-143-148 (in Russ.)
  13. Kokhan A. V., Moroz E. A., Eremenko E. A. et al. (2023). Fluidogenic landforms within the permafrost zone on the shelf of the Pechora and Kara seas. Lomonosov Geogr. J. V. 78. No. 3. P. 104—124. https://doi.org/10.55959/MSU0579-9414.5.78.3.9. (in Russ.)
  14. Krapivner R. B. (2007). Signs of neotectonic activity of the Barents Sea shelf. Geotektonika. № 2. P. 73—89. (in Russ.)
  15. Mel’nikov V.P., Fedorov K. M., Vol’f A.A., Spesivcev V. I. (1998). Analysis of a possible scenario for the formation of bottom ice mounds on the Pechora Sea shelf. Kriosfera Zemli. Iss. 11. № 4. P. 51—57. (in Russ.)
  16. Mel’nikov V.P., Spesivcev V. I. (1995). Inzhenerno-geologicheskie i geokriologicheskie usloviya shel’fa Barentseva i Karskogo morei (Engineering-geological and geocryological conditions of the shelf of the Barents and Kara Seas). Novosibirsk: Nauka. Sib. otdelenie (Publ.). 194 p. (in Russ.)
  17. Metodicheskoe rukovodstvo po sostavleniyu i podgotovke k izdaniyu listov gosudarstvennoi geologicheskoi karty Rossiiskoi Federatsii masshtaba 1:1 000 000 (tret’ego pokolenija) (Methodological guidelines for compiling and preparing for publication sheets of the state geological map of the Russian Federation at a scale of 1:1,000,000 (third generation)). (2009). Saint-Petersburg: VSEGEI (Publ.). 198 p. (in Russ.)
  18. Mironyuk S. G. (2020). Fluidogenic formations: justification for identifying a new genetic group of seabed relief. In: VIII Shchukinskie chteniya: rel’ef i prirodopol’zovanie. Materialy Vserossiiskoi konferentsii s mezhdunarodnym uchastiem. Moscow: MGU (Publ.). P. 37—43. (in Russ.)
  19. Mironyuk S. G., Ivanova A. A., Khlebnikova O. A. (2019a). Fluidogenic landforms as indicators of oil and gas potential of the shelf subsurface. In: Trudy VII Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Morskie issledovaniya i obrazovanie (MARESEDU-2018)”. V. II (IV). Tver’: PoliPRESS (Publ.). P. 120—125. (in Russ.)
  20. Mironyuk S. G., Kolyubakin A. A., Golenok O. A. et al. (2019b). Mud volcanic structures (volcanoids) of the Kara Sea: morphological features and structure. In: Geologiya morei i okeanov: Materialy XXIII Mezhdunarodnoi nauchnoi konferentsii (Shkoly) po morskoi geologii. Moscow: IO RAN (Publ.). Iss. 5. P. 192—196. (in Russ.)
  21. Overduin P., Von Deimling T. S., Miesner F. et al. (2019). Submarine permafrost map in the Arctic modeled using 1-D transient heat flux (SuPerMAP). J. Geophys. Res.: Oceans. V. 124. Iss. 6. P. 3490—3507. https://doi.org/10.1029/2018JC014675
  22. Paull C. K., Dallimore S. R., Jin Y. K. et al. (2022). Rapid seafloor changes associated with the degradation of Arctic submarine permafrost. PNAS. V. 119. № 12. https://doi.org/10.1073/pnas.2119105119
  23. Paull C. K., Lii W. U., Dallimore S. R. et al. (2007). Origin of pingo-like features on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates. Geophys. Res. Lett. V. 34. L01603. https://doi.org/10.1029/2006GL027977
  24. Poley D. F. (1982). A detailed study of a submerged pingo-like feature in the Canadian Beaufort Sea (Arctic, Canada). Dalhousie University, Department of Geology. 105 p.
  25. Portnov A., Smith A. J., Mienert J. et al. (2013). Offshore permafrost decay and massive seabed methane escape in water depths >20m at the South Kara Sea shelf. Geophys. Res. Lett. V. 40. https://doi.org/10.1002/grl.50735
  26. Rokos S. I. (1996). Stratigraphy and geochronology of Quaternary sediments of the shallow shelf of the Pechora and Kara seas according to engineering-geological drilling data. In: Tezisy mezhdunarodnoi konferentsii “Evoljucija biologicheskikh protsessov i morskie ekosistemy v usloviyakh okeanicheskogo periglyatsiala”. Murmansk: MMBI (Publ.). P. 22—23. (in Russ.)
  27. Serov P., Portnov A., Mienert J. et al. (2015). Methane release from pingo-like features across the South Kara Sea shelf, an area of thawing offshore permafrost. J. Geophys. Res.: Earth Surf. V. 120. Iss. 8. P. 1515—1529. https://doi.org/10.10022015JF003467
  28. Shearer J. M., Macnab R. F., Pelletier B. R., Smith T. B. (1971). Submarine pingoes in the Beaufort Sea. Science. V. 174. № 4011. P. 816—818.
  29. Sistema Barentseva morya (Barents Sea system). (2021). A. P. Lisicyna (Ed.). Moscow: GEOS (Publ.). 671 p. (in Russ.)
  30. Van Rensbergen P., Rabaute A., Colpaert A. et al. (2007). Fluid migration and fluid seepage in the Connemara Field, Porcupine Basin interpreted from industrial 3D seismic and well data combined with high-resolution site survey data. Int. J. Earth Sci. V. 96. Iss. 1. P. 185—197. https://doi.org/10.1007/s00531-005-0021-2
  31. Weatherall P., Marks K. M., Jakobsson M. et al. (2015). A new digital bathymetric model of the world’s oceans. Earth and Space Sci. V. 2. Iss. 8. P. 331—345. https://doi.org/10.1002/2015EA000107

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Location of key-site. Bathymetry according to GEBCO_2014 data (Weatherall et al., 2015). 1 — location of the key-site

下载 (224KB)
3. Fig. 2. Bathymetry of the key-site: (a) — digital elevation model and position of section A–Б, presented in fig. 3, white dotted line marks the insets shown in fig. 4; (б) — geomorphological map of the bottom and the results of repeated surveys of gas manifestations in the water column. 1 — flat surface of the alluvial-marine plain; 2 — roll-like rises of the bottom; 3 — depressions; 4 — moats (on the crests of the rises); 5 — vertical acoustic anomalies (gas manifestations) in the water column above the PLF (the size of the circle reflects the size of the PLF): a — not identified, because the PLF was not intersected by the survey traverse, б — absent, в — identified in 2018, г — identified in 2019, д — identified in 2018 and 2019; 6 — compensation depressions around the PLF; 7 — gas manifestations in the water column outside the PLF (a – identified in 2018, б — identified in 2019, в — identified in 2018 and 2019); 8 — areas of the highest density of acoustic anomalies associated with the rise of fluid in the water column; 9 — boreholes described in (Bondarev et al., 2002).

下载 (663KB)
4. Fig. 3. Seismostratigraphy of bottom sediments in the area of PLF distribution along the section A–Б (the position of the section is shown in fig. 2): (а) — section obtained by high-frequency acoustic profiling; (б) — section obtained using a sparker (roman numerals indicate the SSCs mentioned in the text; the letter “a” shows local high-amplitude areas in the SSCIV sequence); (в) — results of interpretation of seismoacoustic data; (г) — section obtained by high-frequency seismic profiling using software amplification to display gas manifestations in the water column.

下载 (781KB)
5. Fig. 4. Morphology and internal structure of rises (а), depressions (б) and pingo-like features (в, г) (the location of the areas is shown in fig. 2, (а)). For each site, a fragment of the DEM and the corresponding section obtained by high-frequency seismic profiling are shown. The numbers on the sections (1, 2, 3) indicate landforms (depressions, rises, PLF) mentioned in the text.

下载 (928KB)
6. Fig. 5. Stages of PLF development: (a) — beginning of the formation of the zone of abnormally high reservoir pressure, (б) — the stage of the origin of the roll-like rise of the bottom, (в) — the stage of the developed roll-like rise of the bottom, (г) — the stage of “young” PLF, (д) — the stage of “mature” PLF and the sinking of the rise. 1 — mud volcanic sediments (H); 2 — marine sediments (H-IIIsr); 3 — marine and alluvial sediments (IIIsr); 4 — marine sediments (IIIkr+kz); 5 — directions of migration of fluids containing gas and fresh water; 6 — tor of permafrost; 7 — base of permafrost; 8 — areas of discontinuity of permafrost and gas saturation; 9 — cracks in permafrost; 10 — sandy sediments; 11 — schlierens of fresh segregated ice; 12 — submarine syngenetic permafrost; 13 — rise of fluids and suspended matter in the water column; 14 — zone of abnormally high reservoir pressure.

下载 (699KB)

版权所有 © Russian Academy of Sciences, 2024