Pingo-like features in the pechora sea: conditions, origin and stages of development
- 作者: Eremenko E.A.1,2, Kokhan A.V.1, Moroz E.A.1, Denisova A.P.1,2, Sokolov S.Y.1, Mutovkin A.D.3
-
隶属关系:
- Geological Institute of RAS
- Lomonosov Moscow State University
- Shirshov Institute of Oceanology of RAS
- 期: 卷 55, 编号 2 (2024)
- 页面: 138—153
- 栏目: SHORT COMMUNICATIONS
- URL: https://medjrf.com/2949-1789/article/view/660720
- DOI: https://doi.org/10.31857/S2949178924020075
- EDN: https://elibrary.ru/PNPYQE
- ID: 660720
如何引用文章
详细
Using the results of multibeam echo sounding and seismic profiling performed during 2018—2019 on the R/V “Akademik Nikolay Strakhov” and all previously published data, a conceptual scheme of the pingo-like feature formation on the shelf of the Pechora Sea (south-eastern part of the Barents Sea between the islands of Kolguev and Vaygach) was developed. During interpreting the genesis of the bottom topography at a key-site with an area of about 12 km2, both new geophysical data obtained by the authors and previously published drilling materials were used. It has been established that formation of pingo-like features starts in the presence of submarine permafrost and subzero temperature of bottom waters under the influence of the fluid flow (degassing). Pingo-like feature development begins due to the formation of zones of abnormally high reservoir pressure below submarine permafrost as a result of vertical migration of fluids. The grouth of a pingo-like feature begins from the formation of a roll-like rise of the bottom due to the extrusion of frozen clayey strata to the near-surface part of the section. Subsequently, as a result of disruption of the continuity and partial thawing of permafrost, the growth of a pingo-like feature, which is essentially a mud volcanic structure, begins on the arch of the uplift. Fluid flow within a vertical channel up to the summit crater may be accompanied by freezing of the clayey strata as a result of the throttling effect. Mud flowing from the summit crater can freeze on the slopes of a pingo-like feature as a result of cooling of the fresh water contained in them under conditions of subzero bottom temperatures. A growth of the mud volcanic structure leads to a decrease in pressure near the base of submarine permafrost, that gradually thaws under the influence of fluid flow. This process leads to the gradual subsidence of roll-like rise and the appearance of compensation depressions. Based on the results of repeated monitoring of gas manifestations in water, it was established that more than half of the pingo-like features are currently active channels for the migration of fluids from the subsurface to the bottom surface and into the water column.
作者简介
E. Eremenko
Geological Institute of RAS; Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: eremenkoeaig@gmail.com
Faculty of Geography
俄罗斯联邦, Moscow; MoscowA. Kokhan
Geological Institute of RAS
Email: eremenkoeaig@gmail.com
俄罗斯联邦, Moscow
E. Moroz
Geological Institute of RAS
Email: eremenkoeaig@gmail.com
俄罗斯联邦, Moscow
A. Denisova
Geological Institute of RAS; Lomonosov Moscow State University
Email: eremenkoeaig@gmail.com
Faculty of Geography
俄罗斯联邦, Moscow; MoscowS. Sokolov
Geological Institute of RAS
Email: eremenkoeaig@gmail.com
俄罗斯联邦, Moscow
A. Mutovkin
Shirshov Institute of Oceanology of RAS
Email: eremenkoeaig@gmail.com
俄罗斯联邦, Moscow
参考
- Atlas: geology and minerals of the Russian shelves (Atlas: geologija i poleznye iskopaemye shel’fov Rossii). (2004). Moscow: GIN RAN (Publ.). 108 p. (in Russ.)
- Blasco S., Bennett R., Brent T. et al. (2013). 2010 State of Knowledge: Bufort Sea seabed geohazards associated with offshore hydrocarbon development. Geol. Surv. Can. Open File 6989. 340 p. https://doi.org/10.4095/292616
- Bogoyavlensky V., Kishankov A., Yanchevskaya A. et al. (2018). Forecast of Gas Hydrates Distribution Zones in the Arctic Ocean and Adjacent Offshore Areas. Geosciences. V. 8. № 12. 453. https://doi.org/10.3390/geosciences8120453
- Bondarev V. N., Rokos S. I., Kostin D. A. i dr. (2002). Sub-permafrost gas accumulations in the upper part of the sedimentary cover of the Pechora Sea. Geologija i geofizika. Iss. 43. № 7. P. 587—598. (in Russ.)
- Denisova A. P., Moroz E. A., Eremenko E. A. et al. (2022). Signs of degassing within the glacial shelf in the north-eastern part of the Barents Sea. In: Rel’ef i chetvertichnye obrazovaniya Arktiki, Subarktiki i Severo-Zapada Rossii. Vyp. 9. Saint-Petersburg: VNIIOkeangeologija im. I. S. Gramberga (Publ.). P. 78—86. https://doi.org/10.24412/2687-1092-2022-9-78-86/. (in Russ.)
- Diak M., Böttcher M. E., Ehlert von Ahn C. M. et al. (2023). Permafrost and groundwater interaction: current state and future perspective. Front. Earth Sci. V. 11. https://doi.org/10.3389/feart.2023.1254309
- Frederick J. M., Buffett B. A. (2016). Submarine groundwater discharge as a possible formation mechanism for permafrost-associated gas hydrate on the circum-Arctic continental shelf. J. Geophys. Res. Solid Earth. V. 121. Iss. 3. P. 1383—1404. https://doi.org/10.1002/2015JB012627.
- Frederick J. M., Buffett B. A. (2015). Effects of submarine groundwater discharge on the present-day extent of relict submarine permafrost and gas hydrate stability on the Beaufort Sea continental shelf. J. Geophys. Res.: Earth Surf. V. 120. Iss. 3. https://doi.org/10.1002/2014JF003349
- Grob H., Riedel M., Duchesne M. J. et al. (2023). Revealing the extent of submarine permafrost and gas hydrates in the Canadian Arctic Beaufort Sea using seismic reflection indicators. Geochem., Geophys., Geosyst. V. 24. Iss. 5. e2023GC010884. https://doi.org/10.1029/2023GC010884
- Gwiazda R., Paull C. K., Dallimore S. R. et al. (2018). Freshwater seepage into sediments of the shelf, shelf edge, and continental slope of the Canadian Beaufort Sea. Geochem., Geophys., Geosyst. V. 19. Iss. 9. P. 3039—3055. https://doi.org/10.1029/2018GC007623
- Hant J. (1982). Geokhimiya i geologiya nefti i gaza (Geochemistry and geology of oil and gas). Moscow: MIR (Publ.). 706 p. (in Russ.)
- Kokhan A. V., Moroz E. A., Eremenko E. A. et al. (2022). Morphology of pingo-like features on the shelf of the Pechora and Kara seas as an indicator of their age and dynamics. In: Rel’ef i chetvertichnye obrazovaniya Arktiki, Subarktiki i Severo-Zapada Rossii. Vyp. 9. Saint-Petersburg: VNIIOkeangeologija im. I. S. Gramberga (Publ.). P. 143—148. https://doi.org/10.24412/2687-1092-2022-9-143-148 (in Russ.)
- Kokhan A. V., Moroz E. A., Eremenko E. A. et al. (2023). Fluidogenic landforms within the permafrost zone on the shelf of the Pechora and Kara seas. Lomonosov Geogr. J. V. 78. No. 3. P. 104—124. https://doi.org/10.55959/MSU0579-9414.5.78.3.9. (in Russ.)
- Krapivner R. B. (2007). Signs of neotectonic activity of the Barents Sea shelf. Geotektonika. № 2. P. 73—89. (in Russ.)
- Mel’nikov V.P., Fedorov K. M., Vol’f A.A., Spesivcev V. I. (1998). Analysis of a possible scenario for the formation of bottom ice mounds on the Pechora Sea shelf. Kriosfera Zemli. Iss. 11. № 4. P. 51—57. (in Russ.)
- Mel’nikov V.P., Spesivcev V. I. (1995). Inzhenerno-geologicheskie i geokriologicheskie usloviya shel’fa Barentseva i Karskogo morei (Engineering-geological and geocryological conditions of the shelf of the Barents and Kara Seas). Novosibirsk: Nauka. Sib. otdelenie (Publ.). 194 p. (in Russ.)
- Metodicheskoe rukovodstvo po sostavleniyu i podgotovke k izdaniyu listov gosudarstvennoi geologicheskoi karty Rossiiskoi Federatsii masshtaba 1:1 000 000 (tret’ego pokolenija) (Methodological guidelines for compiling and preparing for publication sheets of the state geological map of the Russian Federation at a scale of 1:1,000,000 (third generation)). (2009). Saint-Petersburg: VSEGEI (Publ.). 198 p. (in Russ.)
- Mironyuk S. G. (2020). Fluidogenic formations: justification for identifying a new genetic group of seabed relief. In: VIII Shchukinskie chteniya: rel’ef i prirodopol’zovanie. Materialy Vserossiiskoi konferentsii s mezhdunarodnym uchastiem. Moscow: MGU (Publ.). P. 37—43. (in Russ.)
- Mironyuk S. G., Ivanova A. A., Khlebnikova O. A. (2019a). Fluidogenic landforms as indicators of oil and gas potential of the shelf subsurface. In: Trudy VII Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Morskie issledovaniya i obrazovanie (MARESEDU-2018)”. V. II (IV). Tver’: PoliPRESS (Publ.). P. 120—125. (in Russ.)
- Mironyuk S. G., Kolyubakin A. A., Golenok O. A. et al. (2019b). Mud volcanic structures (volcanoids) of the Kara Sea: morphological features and structure. In: Geologiya morei i okeanov: Materialy XXIII Mezhdunarodnoi nauchnoi konferentsii (Shkoly) po morskoi geologii. Moscow: IO RAN (Publ.). Iss. 5. P. 192—196. (in Russ.)
- Overduin P., Von Deimling T. S., Miesner F. et al. (2019). Submarine permafrost map in the Arctic modeled using 1-D transient heat flux (SuPerMAP). J. Geophys. Res.: Oceans. V. 124. Iss. 6. P. 3490—3507. https://doi.org/10.1029/2018JC014675
- Paull C. K., Dallimore S. R., Jin Y. K. et al. (2022). Rapid seafloor changes associated with the degradation of Arctic submarine permafrost. PNAS. V. 119. № 12. https://doi.org/10.1073/pnas.2119105119
- Paull C. K., Lii W. U., Dallimore S. R. et al. (2007). Origin of pingo-like features on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates. Geophys. Res. Lett. V. 34. L01603. https://doi.org/10.1029/2006GL027977
- Poley D. F. (1982). A detailed study of a submerged pingo-like feature in the Canadian Beaufort Sea (Arctic, Canada). Dalhousie University, Department of Geology. 105 p.
- Portnov A., Smith A. J., Mienert J. et al. (2013). Offshore permafrost decay and massive seabed methane escape in water depths >20m at the South Kara Sea shelf. Geophys. Res. Lett. V. 40. https://doi.org/10.1002/grl.50735
- Rokos S. I. (1996). Stratigraphy and geochronology of Quaternary sediments of the shallow shelf of the Pechora and Kara seas according to engineering-geological drilling data. In: Tezisy mezhdunarodnoi konferentsii “Evoljucija biologicheskikh protsessov i morskie ekosistemy v usloviyakh okeanicheskogo periglyatsiala”. Murmansk: MMBI (Publ.). P. 22—23. (in Russ.)
- Serov P., Portnov A., Mienert J. et al. (2015). Methane release from pingo-like features across the South Kara Sea shelf, an area of thawing offshore permafrost. J. Geophys. Res.: Earth Surf. V. 120. Iss. 8. P. 1515—1529. https://doi.org/10.10022015JF003467
- Shearer J. M., Macnab R. F., Pelletier B. R., Smith T. B. (1971). Submarine pingoes in the Beaufort Sea. Science. V. 174. № 4011. P. 816—818.
- Sistema Barentseva morya (Barents Sea system). (2021). A. P. Lisicyna (Ed.). Moscow: GEOS (Publ.). 671 p. (in Russ.)
- Van Rensbergen P., Rabaute A., Colpaert A. et al. (2007). Fluid migration and fluid seepage in the Connemara Field, Porcupine Basin interpreted from industrial 3D seismic and well data combined with high-resolution site survey data. Int. J. Earth Sci. V. 96. Iss. 1. P. 185—197. https://doi.org/10.1007/s00531-005-0021-2
- Weatherall P., Marks K. M., Jakobsson M. et al. (2015). A new digital bathymetric model of the world’s oceans. Earth and Space Sci. V. 2. Iss. 8. P. 331—345. https://doi.org/10.1002/2015EA000107
补充文件
