The chronology and formation conditions of floodplain generations in the lower reaches of the Belaya River (Upper Angara region)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A geomorphological study of a key section of the Belaya River valley in the lower reaches is conducted to reconstruct the Holocene history of the development of the valley. The spatial distribution of floodplain generations of different morphology and low terrace levels is analyzed. To clarify the age relationships of various surfaces, a study of the facies structure and composition of deposits of ten pits and seven boreholes on a cross-section profile was carried out, the age of formation of alluvial strata was determined by radiocarbon dating. The structure of the longitudinal profile of the floodplain and the channel, the absence of signs of constrative accumulation of alluvium, suggests the absence of the tectonic influence on the formation of alluvium in the floodplains and low terraces of the Belaya River. However, the control of the development of a number of bands in the lower reaches of the Belaya River by system of lineaments and the associated stability of these landforms determined their representativeness for assessing the rhythm of alluvial sedimentation and the development of fluvial processes in the Holocene. The landscape-climatic changes at the end of the Late Glacial and Holocene caused the alternation of the stages of high and low water level and the stages of development of the Belaya River valley associated with them within the plain part of its basin. Stages of a relatively small river runoff, typical for time intervals 12.9–7.0; 5.6–4.5; 4.1–2.3 and 0.3–0 kyr BP changed by stages of high-water levels and active floodplain sedimentation 7.0–5.6; 4.5–4.1 and 2.3–0.3 kyr BP. The development of fluvial processes and the rhythmicity of the formation of the studied floodplains correlates well with the context of regional temperature and humidity changes during the Late Glacial and Holocene, allowing us to consider the floodplains of the left-bank tributaries of the Angara River as significant paleogeographic archives.

About the authors

V. A. Golubtsova

Sochava Institute of geography SB RAS

Author for correspondence.
Email: tea_88@inbox.ru
Russian Federation, Irkutsk

M. Yu. Opekunova

Sochava Institute of geography SB RAS; Irkutsk National Research Technical University

Email: opek@mail.ru
Russian Federation, Irkutsk; Irkutsk

M. V. Smirnov

Sochava Institute of geography SB RAS; Institute of Earth’s crust SB RAS

Email: tea_88@inbox.ru
Russian Federation, Irkutsk; Irkutsk

References

  1. Agatova A.R., Nazarov A.N., Nepop R.K. et al. (2012). Holocene glacier fluctuations and climate changes in the southeastern part of the Russian Altai (South Siberia) based on a radiocarbon chronology. Quat. Sci. Rev. V. 43. № 8. P. 74–93. https://doi.org/10.1016/j.quascirev.2012.04.012
  2. Arzhannikova A.A., Arzhannikov S.G. (2005). Neotectonic deformation in the southwestern Siberian craton. Russian Geology and Geophysics. V. 46. № 3. P. 273–279.
  3. Avtomatizirovannaya informatsionnaya sistema gosudarstvennogo monitoringa vodnykh ob"ektov (AISGMVO) (Automated information system for state monitoring of water bodies (AIS GMVO)) [Electronic data]. Access way: https://gmvo.skniivh.ru (access date: 23.02.2021)
  4. Batbaatar J., Gillespie A. (2016). Outburst floods of the Maly Yenisei. Part II – new age constraints from Darhad basin. Int. geology Rev. V. 58. Iss. 14. P. 1753–1779. http://dx.doi.org/10.1080/00206814.2016.1193452
  5. Batbaatar J., Gillespie A., Fink D. et al. (2018). Asynchronous glaciations in arid continental climate. Quat. Sci. Rev. V. 182. P. 1–19. https://doi.org/10.1016/j.quascirev.2017.12.001
  6. Bazarova V.B., Mokhova L.M., Bazarov K.Yu. et al. (2008). Climatic changes and alluvial sedimentation settings in southeastern Transbaikalia in the Middle-Late Holocene (by the example of the Ilya floodplain). Russian Geology and Geophysics. V. 49. № 12. P. 978–985. https://doi.org/10.1016/j.rgg.2008.03.008
  7. Bazhenova O.I., Cherkashina A.A. (2018). Holocene morpholithogenesis in the lake basins of Southeastern Transbaikalia. Geomorfologiya. № 2. P. 4–19. (in Russ.) https://doi.org/10.7868/S0435428118020013
  8. Benito G., Macklin M.G., Panin A. et al. (2015). Recurring flood distribution patterns related to short-term Holocene climatic variability. Scientific Reports. V. 5. 16398. https://doi.org/10.1038/srep16398
  9. Bezrukova E.V., Belov A.V. (2010). Vegetation evolution in the northeastern part of the Lena-Angara plateau during the Mid-Late Holocene. Geography and Natural Resources. V. 31. № 1. P. 41–47. https://doi.org/10.1016/j.gnr.2010.03.008
  10. Bezrukova E.V., Reshetova S.A., Kulagina N.V. et al. (2022). Late Glacial and Holocene environmental history of the Oka Plateau, East Sayan Mountains (Siberia): a palaeolimnological study of several lakes. Limnology and Freshwater Biology. V. 4. P. 1397–1399. https://doi.org/10.31951/2658-3518-2022-A-4-1397
  11. Bezrukova E.V., Reshetova S.A., Volchatova E.V. et al. (2022). The first reconstruction of vegetation and climate changes in the central part of the Oka plateau (East Sayan mountains) in the Middle-Late Holocene. Dokl. Earth Sci. V. 506. № 1. P. 687–692. https://doi.org/10.1134/S1028334X22700064
  12. Bezrukova E.V., Tarasov P.E., Solovieva N. et al. (2010). Last glacial-interglacial vegetation and environmental dynamics in southern Siberia: chronology, forcing and feedbacks. Palaeogeography, Palaeoclimatology, Palaeoecology. V. 296. P. 185–198. https://doi.org/10.1016/j.palaeo.2010.07.020
  13. Bird B.W., Barr R.C., Commerford J. et al. (2019). Late-Holocene floodplain development, land-use, and hydroclimate–flood relationships on the lower Ohio River, US. Holocene. V. 29. P. 1856–1870. https://doi.org/10.1177/0959683619865598
  14. Botvinkina L.N. (1965). Metodicheskoe rukovodstvo po izucheniyu sloistosti (Methodological guide to the study of layering). Moscow: Nauka (Publ.). 263 p. (in Russ.)
  15. Bridge J.S. (2003). Rivers and Floodplains, Forms, Processes, and Sedimentary Record. Oxford: Blackwell Science. 512 p.
  16. Chalov R.S. (2011). Ruslovedenie: teoriya, geografiya, praktika. T 2. Morfodinamika rechnykh rusel (Riverbed science: theory, geography, practice. V. 2. Morphodinamics of river channels). Moscow: KRASAND (Publ.). 960 p. (in Russ.)
  17. Chipizubov A.V., Arzhannikova A.V., Vorobyeva G.A. et al. (2001). Buried paleoseismic dislocations in the south of the Siberian platform. Dokl. Earth Sci. V. 379. № 5. P. 586–588. (in Russ.)
  18. Danko L.V., Bezrukova E.V., Orlova L.A. (2009). Reconstructing the development of the geosystems of the Prymorsky Range during the latter half of the Holocene. Geography and Natural Resources. V. 30. № 3. P. 246–252. https://doi.org/10.1016/j.gnr.2009.09.008
  19. Endrikhinsky A.S. (1982). Sequence of main geologic events on south of Siberia during late Pleistocene and Holocene. In: Pozdnii pleistotsen i golotsen yuga Vostochnoi Sibiri. K XI Kongressu INQUA v SSSR. Moscow–Novosibirsk: Nauka (Publ.). P. 6–35. (in Russ.)
  20. Fedotov A.P., Chebykin E.P., Semenov M.Yu. et al. (2004). Changes in the volume and salinity of Lake Khubsugul (Mongolia) in response to global climate changes in the upper Pleistocene and the Holocene. Palaeogeogr., Palaeoclimatol., Palaeoecol. V. 209. № 1–4. P. 245–257. https://doi.org/10.1016/j.palaeo.2003.12.022
  21. Feng Z.-D., Ma Y.Z., Zhang H.C. et al. (2013). Holocene climate variations retrieved from Gun Nuur lake-sediment core in the northern Mongolian Plateau. Holocene. V. 23. № 12. P. 1721–1730. https://doi.org/10.1177/0959683613505337
  22. Florensov N.A. (Eds.). (1971). Ploskogorʼya i nizmennosti Vostochnoi Sibiri (Plateau and lowlands of Eastern Siberia). Moscow: Nauka (Publ.). 321 p. (in Russ.)
  23. Fukumoto Y., Kashima K., Orkhonselenge A. et al. (2012). Holocene environmental changes in northern Mongolia inferred from diatom and pollen records of peat sediment. Quat. Int. V. 254. P. 83–91. https://doi.org/10.1016/j.quaint.2011.10.014
  24. Golubtsov V.A., Cherkashina A.A., Bronnikova M.A. (2021). Karbonatnye novoobrazovaniya v stepnykh i lesostepnykh pochvakh Baikal’skogo regiona: genesis, usloviya i chronologiya formirovaniya (Secondary carbonate accumulations in steppe and forest-steppe soils of Baikal region: genesis, chronology and forming conditions). Novosibirsk: SO RAN (Publ.). 222 p. (in Russ.)
  25. Golubtsov V.A., Opekunova M.Yu. (2022) Structure and chronology of floodplain deposits within Belaya River basin. Geomorfologiya. V. 53. № 4. P. 42–55. (in Russ.). https://doi.org/10.31857/S0435428122040046
  26. Golubtsov V.A., Opekunova M.Yu., Maksimov F.E. et al. (2020). Aeolian processes in the forest-steppe landscapes of the Upper Angara region in the Holocene. Geography and natural resources. V. 41. № 4. P. 381–389. https://doi.org/10.1134/S1875372841040095
  27. Golubtsov V.A., Ryzhov Yu.V., Kobylkin D.V. (2017). Pochvoobrazovanie i osadkonakoplenie v Selenginskom srednegorʼe v pozdnelednikovʼe i golotsene (Pedogenesis and sedimentation in the Selenga Middle Mountains in the Late Glacial and Holocene). Irkutsk: Institut geоgrafii SO RAN (Publ.). 139 p. (in Russ.)
  28. Holocene zooarchaeology of Cis-Baikal. (2017). Mainz: Nünnerich-Asmus Verl. & Media GmbH. 144 p.
  29. IPCC, Climate Change: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (2021). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2391 p. https://doi.org/10.1017/9781009157896
  30. Karabanov E.B., Prokopenko A.A., Williams D.F. et al. (2000). A new record of Holocene climate change from the bottom sediments of Lake Baikal. Palaeogeogr., Palaeoclimatol., Palaeoecol. V. 156. № 3-4. P. 211–224.
  31. Khotinsky N.A. (1977). Golotsen Severnoi Evrazii (Holocene of Northern Eurasia). Moscow: Nauka (Publ.). 200 p. (in Russ.)
  32. Kobe F., Bezrukova E., Leipe C. et al. (2020). Holocene vegetation and climate history in Baikal Siberia reconstructed from pollen records and its implications for archaeology. Archaeological Research in Asia. V. 23. 100209. https://doi.org/10.1016/j.ara.2020.100209
  33. Kuklina S.L., Vorobyeva G.A. (2019). Paleoecological conditions of pedogenesis and sedimentation on high floodplain of Belaya River (Western Cisbaikalia). Izvestiya IGU. Seriya Biologiya. Ecologiya. V. 29. P. 73–87. (in Russ.) https://doi.org/10.26516/2073-3372.2019.29.73
  34. Lamakin V.V. (1950). About dynamic classification of river deposits. Zemlevedeniye. Vol. 3. No. 43. P. 161–168. (in Russ.)
  35. Leksakova V.D. (1987) Maksimalnyi stok rek basseina reki Angary (Maximal runoff of rivers in Angara basin). Novosibirsk: Nauka (Publ.). 136 p. (in Russ.)
  36. Litvintsev G.G., Tarakanova G.I. (1970). K voprosu o stratigrafii chetvertichnykh otlozhenii Irkutskogo amfiteatra. Geologiya i poleznye iskopaemye yuga Sibirskoi platformy (On the question of the stratigraphy of quaternary deposits of the Irkutsk amphitheater. Geology and minerals of the South of the Siberian platform). Leningrad: Nedra (Publ.). P. 88–106. (in Russ.)
  37. Logachev N.A., Lomonosova T.K., Klimanova V.M. (1964). Kainozoiskie otlozheniya Irkutskogo amfiteatra (Cenozoic deposits of the Irkutsk amphitheate). Moscow: Nauka (Publ.). 195 p. (in Russ.)
  38. Maloletko A.M. (2008). Evolutsiya rechnykh sistem Zapadnoi Sibiri v mezozoe i kainozoe (Evolution of river systems of Western Siberia in Mesozoic and Cenozoic). Tomsk: TGU Publ. 288 p. (in Russ.)
  39. Mann M., Zhang Z., Rutherford S. et al. (2009). Global signatures and dynamical origins of the little ice Age and Medieval climate anomaly. Science. V. 326. P. 1256.
  40. Mats V.D., Fudjii Sh., Mashiko K. et al. (2002). Paleohydrology of Lake Baikal in relation to neotectonics. Russian Geology and Geophysics. V. 43. № 2. P. 129–142.
  41. Medvedev G.I. (Eds.). (1971). Mezolit Verkhnego Priangariya. Ch. 1. Pamyatniki Angaro-Bel’skogo i Angaro-Idinskogo raionov (Mesolithic of Upper Angara region. Ch. 1. Archeological sites of Angara-Bel’sk and Angara-Ida districts). Irkutsk: Irkutsk State University (Publ.). 242 p. (in Russ.)
  42. Odintcov M.M., Tkalich S.N. (Eds.). (1962). Geologiya SSSR (Geology of USSR). Moscow: Gosgeoltekhizdat (Publ.). 514 p. (in Russ.)
  43. Opekunova M.Y., Kichigina N.V., Rybchenko A.A. et al. (2023). Channel deformations and hazardous processes of the left-bank tributaries of the Angara River (Eastern Siberia). Water. V. 15. 291. https://doi.org/10.3390/w15020291
  44. Panin A., Adamiec G., Buylaert J.-P. et al. (2017). Two Late Pleistocene climate-driven incision/aggradation rhythms in the middle Dnieper River basin, west-central Russian Plain. Quat. Sci. Rev. V. 166. P. 266–288. https://doi.org/10.1016/j.quascirev.2016.12.002
  45. Pears B., Brown A., Toms P. et al. (2020). A sub-centennial-scale optically stimulated luminescence chronostratigraphy and late Holocene flood history from a temperate river confluence. Geology. V. 48. P. 819–825. https://doi.org/10.1130/G47079.1
  46. Ran M., Chen L. (2019). The 4.2 ka BP climatic event and its cultural responses. Quat. Int. V. 521. P. 158–167. https://doi.org/10.1016/j.quaint.2019.05.030
  47. Ravskiy E.I. (1972). Osadkonakoplenie i klimaty Vnutrennei Azii v antropogene (Sedimentations and climates of Inner Asia in anthropogene). Moscow: Nauka (Publ.). 323 p. (in Russ.)
  48. Reimer P.J., Austin W.E.N., Bard E. et al. (2020). The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon. V. 62. Iss. 4. Р. 725–757. https://doi.org/10.1017/RDC.2020.41
  49. Ryzhov Yu.V., Golubtsov V.A. (2021). Paleocryogenesis and erosional landform development in the Baikal region, Siberia, during the second half of the Late Pleistocene and the Holocene. Archaeological Research in Asia. V. 26. 100277. https://doi.org/10.1016/j.ara.2021.100277
  50. Ryzhov Yu.V., Golubtsov V.A., Opekunova M.Yu. (2021). The formation of terraces of the Tarbagataika river (Western Transbaikalia) in the Late Glacial and Holocene. Geography and Natural Resources. V. 42. № 2. P. 164–171. https://doi.org/10.1134/S1875372821020116
  51. Savelyev N.A. Ulanov I.V. (2018). Ceramics of the Neolithic age of the multilayered location of the Burnt Forest (Southern Angara region). Izvestiya IGU. Seriya Geoarkheologiya. Etnologiya. Antropologiya. V. 26. P. 46–85. (in Russ.)
  52. Schwanghart W., Schutt B., Walther M. (2008). Holocene climate evolution of the Ugii nuur Basin, Mongolia. Adv. Atmos. Sci. V. 25. № 6. P. 986–998. https://doi.org/10.1007/ s00376-008-0986-4
  53. Shchetnikov A.A., Bezrukova E.V., Maksimov F.E. et al. (2016). Environmental and climate reconstructions of the Fore-Baikal area during MIS 5-1: Multiproxy record from terrestrial sediments of the Ust-Oda section (Siberia, Russia). J. of Asian Earth Sci. V. 129. P. 220–230. http://dx.doi.org/10.1016/j.jseaes.2016.08.015
  54. Sidorchuk A.Yu., Panin A.V., Borisova O.K. (2012). River runoff decrease in North-Eurasian Plains during the Holocene optimum. Water Resources. V. 39. № 1. P. 69–82. https://doi.org/10.1134/S0097807812010113
  55. Stepanova O.G., Trunova V.A., Osipov E.Yu. et al. (2019). Glacier dynamics in the southern part of East Siberia (Russia) from the final part of the LGM to the present based on from biogeochemical proxies from bottom sediments of proglacial lakes. Quat. Int. V. 524. P. 4–12. https://doi.org/10.1016/j.quaint.2019.03.003
  56. Tarasov P., Bezrukova E., Karabanov E. et al. (2007). Vegetation and climate dynamics during the Holocene and Eemian interglacials derived from Lake Baikal pollen records. Palaeogeogr., Palaeoclimatol., Palaeoecol. V. 252. P. 440–457. https://doi.org/10.1016/j.palaeo.2007.05.002
  57. Tarasov P.E., Bezrukova E.V., Krivonogov S.K. (2009). Late Glacial and Holocene changes in vegetation cover and climate in southern Siberia derived from a 15 kyr long pollen record from Lake Kotokel. Climate of the Past. V. 5. P. 285–295. https://doi.org/10.5194/cp-5-285-2009
  58. Tseitlin S.M. (1979). Geologiya paleolita Severnoi Azii (Geology of the Paleolithic of Northern Asia). Moscow: Nauka (Publ.). 287 p. (in Russ.)
  59. Tektonicheskaya karta (masshtab 1:4 000 000). Atlas Irkutskoi oblasti (Tectonic map (scale 1:4 000 000). Atlas Irkut region). (1962). Moscow–Irkutsk: GUGK SSSR (Publ.). P. 18–19.
  60. Ufimtsev G.F., Shchetnikov A.A., Filinov I.A. (2010). Latest erosional incision in river valleys of Southern East Siberia. Russian Geology and Geophysics. V. 51. № 8. P. 863–867. https://doi.org/10.1016/j.rgg.2010.07.006
  61. Vorobyev V.V., Antipov A.N., Khabarov V.F. (Eds.). (2004). Atlas. Irkutskaya oblastʼ: ekologicheskie usloviya razvitiya (Atlas. Irkutsk region: environmental conditions for the development). Irkutsk: IG SO RAN; Moscow: Roskartografiya (Publ.). 90 p. (in Russ.)
  62. Vorobyeva G.A. (2010). Pochva kak letopis’ prirodnykh sobytii Pribaikal’ya: problema evolutsii i klassifikattsii pochv (Soil as a memory of natural events of Cisbaikalia: problems of evolution and classification of soils). Irkutsk: Irkutsk. un-t (Publ.). 205 p. (in Russ.)
  63. Voskresenskii S.S. (1968). Geomorfologiya SSSR (Geomorphology of the USSR). Moscow: Vysshaya shkola (Publ.). 367 p. (in Russ.)
  64. Zolotarev A.G. (1981). Some problems of neotectonics. Ob”yasnitel’naya zapiska k karte noveishei tektoniki yuga Vostochnoi Sibiri (1:1 500 000). Leningrad: VSEGEI (Publ.). (in Russ.)
  65. Wang W., Feng Z. (2013). Holocene moisture evolution across the Mongolian Plateau and its surrounding areas: A synthesis of climatic record. Earth-Sci. Rev. V. 122. P. 38–57. http://dx.doi.org/10.1016/j.earscirev.2013.03.005
  66. Zhang C., Zhang W., Feng Z.-D. et al. (2012). Holocene hydrological and climatic change on the northern Mongolian Plateau based on multi-proxy records from Lake Gun Nuur. Palaeogeogr., Palaeoclimatol., Palaeoecol. V. 323–325. P. 75–86. https://doi.org/10.1016/j.palaeo.2012.01.032

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location of investigated territory within the Belaya River basin.

Download (1MB)
3. Fig. 2. Geomorphological structure of investigated territory. 1 – water objects; floodplain: 2 – low, 3 – middle, 4 – high; terraces: 5 – first terrace, 6 – second and third terraces; 7 – oxbows (bottoms of former channels); 8 – crests; 9 – bedrock slopes; 10 – built-up areas; 11 – pits and boreholes (1 – Mogoy-2, 2 – Mogoy-1, 3 – B-1-22, 4 – B-2-22, 5 – B-19, 6 – B-7-22, 7 – B-4-22, 8 – B-5-22, 9 – Kholmushino, 10 – Berezovyi); 12 – cross section.

Download (422KB)
4. Fig. 3. Cross-section across the Belaya River valley. 1–3 – buried soils horizons; 4 – loams; 5 – sandy loams; 6 – sands; 7 – pebbles; 8 - sampling sites for radiocarbon dating; 9 – charcoals; 10 – debris inclusions; 11 – cryogenic features; 12 – peats; 13 – red-ox features; 14 – investigated sections and boreholes; 15 – bedrock; 16 – section numbers.

Download (637KB)
5. Fig. 4. Structure of investigated sections and radiocarbon age of paleosols. Horizons of buried soils: 1 – dark humus, 2 – gray-humus, 3 – illuvial, 4 – carbonate accumulative; 5 – loams; 6 – sandy loams; 7 – sands; 8 – pebbles; 9 – samples for radiocarbon dating; 10 – calendar age; 11 – charcoals; 12 – debris inclusions; 13–14 – cryogenic features; 15 – buried peats; 16 – krotovinas; 17 – red-ox features.

Download (1MB)
6. Fig. 5. Correlation between the stages of formation of the studied floodplain-channel complexes and landscape-climatic changes during the Holocene. (а) – temperature fluctuations in Fore-Baikal region (Vorobyova, 2010); (б) – global changes of temperatures during last 2 kyr (Mann et al., 2009); (в) – changes in the content of diatoms in the bottom sediments of the Lake Baikal (Karabanov et al., 2000); (г) – humidity fluctuations in the Baikal region, according to (Wang, Feng, 2013, г1) and (Tarasov et al., 2007, г2); (д) – aeolian processes dynamics in the Belaya River valley (Golubtsov et al., 2020); (е) – dynamics of development of the studied surfaces (MF – middle floodplain; HF – high floodplain; I T – first terrace). 1 – stages of pedogenesis; 2 – cover deposits; 3 – floodplain deposits; 4 – sediments of the near-channel shallow facies. The blue horizontal stripes correspond to the stages of increased flood activity, the brown ones correspond to the decrease in flood activity and low dynamics of fluvial processes.

Download (741KB)

Copyright (c) 2024 Russian Academy of Sciences