Operational control of an unmanned aerial vehicle helicopter type to ensure emergency safe landing on an unequipped pad
- Autores: Evdokimenkov V.N.1, Ermakov P.G.1, Gogolev A.A.1
-
Afiliações:
- Moscow Aviation Institute (National Research University)
- Edição: Nº 3 (2024)
- Páginas: 169-182
- Seção: CONTROL SYSTEMS FOR MOVING OBJECTS
- URL: https://medjrf.com/0002-3388/article/view/676423
- DOI: https://doi.org/10.31857/S0002338824030196
- EDN: https://elibrary.ru/UPFHMT
- ID: 676423
Citar
Resumo
The problem of providing an emergency landing of an unmanned aerial vehicle (UAV) helicopter type flying in a certain area of the target application is considered. The two-stage algorithm for finding an unprepared landing pad taking into account a set of requirements is proposed. At the first stage, using a digital elevation map placed on an UAV helicopter type board a route for overflying unprepared landing pads in terms of surface topography is calculated. A route formation is achieved by sequentially solving static optimization problems in order to minimize the average losses that occur when an UAV helicopter type flying from one an unprepared landing pad to another. At the second stage, which is implemented directly during an UAV’s helicopter type movement along the calculated route, the final choose of an unprepared landing pad is made based on the processing of ground penetrating radar data. A neural network classifier based on a two-layer perceptron is used to assess the suitability of an unprepared landing pad to the soil density requirement. An example that illustrates the operation of the proposed algorithm both under the conditions of a computational experiment and during a series of flight experiments is considered.
Palavras-chave
Sobre autores
V. Evdokimenkov
Moscow Aviation Institute (National Research University)
Autor responsável pela correspondência
Email: pavel-ermakov-1998@mail.ru
Rússia, Moscow
P. Ermakov
Moscow Aviation Institute (National Research University)
Email: pavel-ermakov-1998@mail.ru
Rússia, Moscow
A. Gogolev
Moscow Aviation Institute (National Research University)
Email: pavel-ermakov-1998@mail.ru
Rússia, Moscow
Bibliografia
- Цуканов И.Р., Азман А.В. Решаемые проблемы, преимущества и перспективы развития беспилотных вертолетов // Изв. ТулГУ. Технические науки. 2022. Вып. 9.
- Линник Ю.В. Метод наименьших квадратов и основы математико-статистической теории обработки наблюдений. М.: Физматгиз, 1962. 352 с.
- Андреев М.А., Миллер А.Б., Миллер Б.М., Степанян К.В. Планирование траектории беспилотного летательного аппарата в сложных условиях при наличии угроз // Изв. РАН. ТиСУ. 2012. № 2. С.166–176.
- Гончаренко В.И., Желтов С.Ю., Князь В.А., Лебедев Г.Н., Михайлин Д.А., Царева О.Ю. Интеллектуальная система планирования групповых действий беспилотных летательных аппаратов при наблюдении наземных мобильных объектов на заданной территории // Изв. РАН. ТиСУ. 2021. № 3. С. 39–56.
- Себряков Г.Г., Красильщиков М.Н., Евдокименков В.Н. Алгоритмическое и программно-математическое обеспечение предполетного планирования групповых действий беспилотных летательных аппаратов // Фундаментальные проблемы группового взаимодействия роботов: материалы отчетного мероприятия РФФИ по конкурсу “офи-м” (тема 604) в рамках международной научно-практической конф. Волгоград, 2018. С. 30–32.
- Evdokimenkov V.N., Krasilshchikov M.N., Kozorez D.A. Development of Pre-flight Planning Algorithms for the Functional-program Prototype of a Distributed Intellectual Control System of Unmanned Flying Vehicle Groups // INCAS Bulletin. 2019. V. 11. № 1. P. 75–88.
- Rafiqul A., Mesbah A. Ground Penetrating Radar for Measuring Thickness of an Unbound Layer of a Pavement // Advances in Intelligent Systems and Computing. 2018. V. 598. P. 160–167.
- Leucci G. Ground Penetrating Radar: The Electromagnetic Signal Attenuation and Maximum Penetration Depth // Scholarly Research Exchange. 2008. V. 2008. https://doi.org/10.38114/2008/926091
- Booth A.D, Koylass T.M. Drone-mounted Ground-penetating Radar Surveying: Flight-Height Considerations for Diffraction-based Velocity Analysis // GEOPHYSICS. 2021. V. 87. № 4. https://doi.org/10.1190/geo2021-0602.1 Zakriya M., Elfadel I., Rasras M. Monolitic Multi Degree of Freedom (MDoF) Capacitive MEMS Accelerometers // Micromachines. 2018. V. 9. № 11. https://doi.org/0.3390/mi9110602
- Quinchia A., Falco G., Faletti E., Dovis F. A Comparison Between Different Error Modelling of MEMS Applied to GPS / INS Integrate Systems // Sensors (Basel). 2013. V. 13. №. 3. P. 9549–0588. https://doi.org/10.3390/s130809549
- Liu Hong Dan, Shu Xiong Ying, Li Xi Sheng. Application Of Strongly Tracking Kalman Filter In MEMS Gyroscopes Bias Compensation // 6th Intern. Conf. on Advanced Materials and Computer Science. ISAMCS, Rome, 2017. https://doi.org/10.23977/icamcs.2017.1004
- Parra-Tsunekawa I., Ruiz-del-Solar J., Vallejos P. A Kalman-filtering-based Approach for Improving Terrain Mapping in off-road Autonomous Vehicles // J. Intelligent & Robotic Systems. 2014. V. 78. P. 577–591. https://doi.org/10.1007/s10846-014-0087-9
- Rullán-Lara J., Salazar S., Lozano R. Real-time Localization of an UAV Using Kalman Filter and a Wireless Sensor Network // J. Intelligent & Robotic Systems. 2012. V. 65. P. 283–293. https://doi.org/10.1007/s10846-011-959908
- Kim K., Lee L., Park C. Adaptive Two-stage Extanded Kalman Filter for a Fault-tolerant INS-GPS Loosely Coupled Systems // IEEE Translations on Aerospace and Electronic Systems. 2009. V. 45. № 1. P. 125–137. https://doi.org/10.1109/TAES.2009.4805268
- Веремеенко К.К., Желтов С.Ю., Ким Н.В., Себряков Г.Г , Красильщиков М.Н.. Современные информационные технологии в задачах навигации и наведения беспилотных маневренных летательных аппаратов. М.: Физматлит, 2009. 556 с.
- Dah-Jing Jwo, Chung F., Tsu-Pin Weng. Adaptive Kalman Filter for Navigation Sensor Fusion, Sensor Fusion and Its Applications, Ciza Thomas (Ed.), ISBN: 978-953-307-101-5, InTech. 2010. P. 488. https://doi.org/10.5772/9957
- Shuttle Radar Topography Mission. URL: https://www2.jpl.nasa.gov/srtm/.
- OpenStreetMap. URL: https://www.openstreetmap.org .
- Гринев А.Ю. Вопросы подповерхностной радиолокации. М.: Радиотехника, 2005. 416 c.
- Изюмов С.В., Дручинин C.В., Вознесенский А.С. Теория и методы георадиолокации: Учебное пособие. М.: Горная книга, Изд. Московского гос. горного ун-та, 2008. 196 с.
- Сухобок Ю.А. Совершенствование методики георадарного обследования грунтовых объектов транспортной инфраструктуры: дис... канд. техн. наук: 05.23.11. Хабаровск, 2014. 165 c.
Arquivos suplementares
