Effect of cold stress on anthocyanin content and anthocyanin biosynthesis pathway gene expression in potato Solanum tuberosum L. leaves
- 作者: Bykova A.V.1, Meleshin A.A.1, Shchennikova A.V.1, Kochieva E.Z.1,2
-
隶属关系:
- Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
- Lomonosov Moscow State University, Faculty of Biology
- 期: 卷 61, 编号 7 (2025)
- 页面: 71-82
- 栏目: ГЕНЕТИКА РАСТЕНИЙ
- URL: https://medjrf.com/0016-6758/article/view/693616
- DOI: https://doi.org/10.31857/S0016675825070058
- ID: 693616
如何引用文章
详细
Cold stress has a negative effect on the ontogenesis of plants, which cold resistance is associated, among other things, with the accumulation of anthocyanins with antioxidant activity. The aim of this work was to analyze the cold stress effect on the content of anthocyanins and the regulation of anthocyanins biosynthesis in potato (Solanum tuberosum L.). In the leaves of the cv. Lady Claire plants, subjected to a two-day low-temperature exposure followed by a recovery period, the expression of the anthocyanins biosynthesis genes was determined in the dynamics of the experiment. Significant activation of regulatory (StHY5, StJAF13) and structural (StCHS2, StCHI, StF3H, StDFR) genes of the pathway was revealed at the beginning of the stress and by the end of the recovery phase. Expression of the structural gene StANS did not change. In the same leaves, the content of anthocyanins was determined and its increase was shown at the beginning and end of cold stress. Similar dynamics of gene expression (except StANS) was found to be consistent with fluctuations in anthocyanin levels. Overall, it was demonstrated that lower temperatures stimulated the expression of anthocyanin biosynthesis genes and anthocyanin accumulation in potato leaves. The data obtained may contribute to understanding the molecular mechanism of anthocyanin biosynthesis regulation in response to abiotic stresses.
作者简介
A. Bykova
Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: kulakova_97@mail.ru
Moscow, 119071 Russia
A. Meleshin
Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: kulakova_97@mail.ru
Moscow, 119071 Russia
A. Shchennikova
Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: kulakova_97@mail.ru
Moscow, 119071 Russia
E. Kochieva
Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences; Lomonosov Moscow State University, Faculty of Biology
编辑信件的主要联系方式.
Email: kulakova_97@mail.ru
Moscow, 119071 Russia; Moscow, 119991 Russia
参考
- Kidokoro S., Shinozaki K., Yamaguchi-Shinozaki K. Transcriptional regulatory network of plant cold-stress responses // Trends Plant Sci. 2022. V. 27(9). P. 922–935. https://doi.org/10.1016/j.tplants.2022.01.008
- Apel K., Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction // Annu. Rev. Plant Biol. 2004. V. 55. P. 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
- Bulgakov V.P., Fialko A.V., Yugay Y.A. Involvement of epigenetic factors in flavonoid accumulation during plant cold adaptation // Plant Physiol. Biochem. 2024. V. 216. https://doi.org/10.1016/j.plaphy.2024.109096
- Fukumoto L.R., Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds // J. Agric. Food Chem. 2000. V. 48(8). P. 3597–3604. https://doi.org/10.1021/jf000220w
- Neill S.O., Gould K.S. Anthocyanins in leaves: Light attenuators or antioxidants? // Funct. Plant Biol. 2003. V. 30. P. 865–873. https://doi.org/10.1071/FP03118
- Ahmed N.U., Park J.-I., Jung H.-J. et al. Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa // Gene. 2014. V. 550. P. 46–55. https://doi.org/10.1016/j.gene.2014.08.013
- Naing A.H., Kim C.K. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stres-ses // Physiol. Plant. 2021. V. 172(3). P. 1711–1723. https://doi.org/10.1111/ppl.13373
- Xu Z., Mahmood K., Rothstein S.J. ROS induces anthocyanin production via late biosynthetic genes and anthocyanin deficiency confers the hypersensitivity to ros-generating stresses in Arabidopsis // Plant Cell Physiol. 2017. V. 58(8). P. 1364–1377. https://doi.org/10.1093/pcp/pcx073
- Dar N.A., Mir M.A., Mir J.I. et al. MYB-6 and LDOX-1 regulated accretion of anthocyanin response to cold stress in purple black carrot (Daucus carota L.) // Mol. Biol. Rep. 2022. V. 49(6). P. 5353–5364. https://doi.org/10.1007/s11033-021-07077-3
- Pietrini F., Iannelli M.A., Massacci A. Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo-inhibitory risks at low temperature, without further limitation to photosynthesis // Plant Cell Environ. 2002. V. 25. P. 1251–1259. https://doi.org/10.1046/j.1365-3040.2002.00917.x
- Li Z., Vickrey T.L., McNally M.G. et al. Assessing anthocyanin biosynthesis in Solanaceae as a model pathway for secondary metabolism // Genes (Basel). 2019. V. 10(8). https://doi.org/10.3390/genes10080559
- Xu W., Dubos C., Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes // Trends Plant Sci. 2015. V. 20(3). P. 176–185. https://doi.org/10.1016/j.tplants.2014.12.001
- Lloyd A., Brockman A., Aguirre L. et al. Advances in the MYB-bHLH-WD repeat (MBW) pigment regulatory model: Addition of a WRKY factor and co- option of an anthocyanin MYB for betalain regulation // Plant Cell Physiol. 2017. V. 58. P. 1431–1441. https://doi.org/10.1093/pcp/pcx075
- Gonzalez A., Zhao M., Leavitt J.M., Lloyd A.M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings // Plant J. 2008. V. 53. P. 814–827. https://doi.org/10.1111/j.1365-313X.2007.03373.x
- Hichri I., Barrieu F., Bogs J. et al. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway // J. Exp. Bot. 2011. V. 62. P. 2465–2483. https://doi.org/10.1093/jxb/erq442
- Maier A., Schrader A., Kokkelink L. et al. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis // Plant J. 2013. V. 74. P. 638–651. https://doi.org/10.1111/tpj.12153
- An J.P., Qu F.J., Yao J.F. et al. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple // Hortic. Res. 2017. V. 4. 17056. https://doi.org/10.1038/hortres.2017.23
- Kim S., Hwang G., Lee S. et al. High ambient temperature represses anthocyanin biosynthesis through degradation of HY5 // Front. Plant Sci. 2017. V. 8. https://doi.org/10.3389/fpls.2017.01787
- Liu B., Wang X.Y., Cao Y. et al. Factors affecting freezing tolerance: A comparative transcriptomics study between field and artificial cold acclimations in overwintering evergreens // Plant J. 2020. V. 103(6). P. 2279–2300. https://doi.org/10.1111/tpj.14899
- Li L., Ban Z.-J., Li X.-H. et al. Differential expression of anthocyanin biosynthetic genes and transcription factor PcMYB10 in pears (Pyrus communis L.) // PLoS One. 2012. V. 7. https://doi.org/10.1371/journal.pone.0046070
- Gaiotti F., Pastore C., Filippetti I. et al. Low night temperature at veraison enhances the accumulation of anthocyanins in Corvina grapes (Vitis Vinifera L.) // Sci. Rep. 2018. V. 8(1). P. 8719. https://doi.org/10.1038/s41598-018-26921-4
- He Q., Ren Y., Zhao W. et al. Low temperature promotes anthocyanin biosynthesis and related gene expression in the seedlings of purple head chinese cabbage (Brassica rapa L.) // Genes (Basel). 2020. V. 11(1). https://doi.org/10.3390/genes11010081
- Zhang Q., Zhai J., Shao L. et al. Accumulation of anthocyanins: an adaptation strategy of Mikania micrantha to low temperature in winter // Front. Plant Sci. 2019. V. 10. https://doi.org/10.3389/fpls.2019.01049
- Li P., Li Y.J., Zhang F.J. et al. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation // Plant J. 2017. V. 89(1). P. 85–103. https://doi.org/10.1111/tpj.13324
- Meng X., Yin B., Feng H.L. et al. Overexpression of R2R3-MYB gene leads to accumulation of anthocyanin and enhanced resistance to chilling and oxidative stress // Biologia Plantarum. 2014. V. 58. P. 121–130. https://doi.org/10.1007/s10535-013-0376-3
- Liu H., Able A.J., Able J.A. Priming crops for the future: Rewiring stress memory // Trends Plant Sci. 2022. V. 27(7). P. 699–716. https://doi.org/10.1016/j.tplants.2021.11.015
- Tengkun N., Dongdong W., Xiaohui M. et al. Analysis of key genes involved in potato anthocyanin biosynthesis based on genomics and transcriptomics data // Front. Plant Sci. 2019. V. 10. https://doi.org/10.3389/fpls.2019.00603
- Liu Y., Tikunov Y., Schouten R.E. et al. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: A review // Front. Chem. 2018. V. 6. P. 1–17. https://doi.org/10.3389/fchem.2018.00052
- D'Amelia V., Villano C., Batelli G. et al. Genetic and epigenetic dynamics affecting anthocyanin biosynthesis in potato cell culture // Plant Sci. 2020. V. 298. https://doi.org/10.1016/j.plantsci.2020.110597
- Strygina K.V., Kochetov A.V., Khlestkina E.K. Genetic control of anthocyanin pigmentation of potato tissues // BMC Genet. 2019. V. 20. Suppl. 1. 27. https://doi.org/10.1186/s12863-019-0728-x
- D'Amelia V., Aversano R., Ruggiero A. et al. Subfunctionalization of duplicate MYB genes in Solanum commersonii generated the cold-induced ScAN2 and the anthocyanin regulator ScAN1 // Plant Cell Environ. 2018. V. 41(5). P. 1038–1051. https://doi.org/10.1111/pce.12966
- Yan C., Zhang N., Wang Q. et al. The effect of low temperature stress on the leaves and MicroRNA expression of potato seedlings // Front. Ecol. Evol. 2021. V. 9. https://doi.org/10.3389/fevo.2021.727081
- Bao Y., Nie T., Wang D., Chen Q. Anthocyanin regulatory networks in Solanum tuberosum L. leaves elucidated via integrated metabolomics, transcriptomics, and StAN1 overexpression // BMC Plant Biol. 2022. V. 22(1). P. 228. https://doi.org/10.1186/s12870-022-03557-1
- Folch J., Lees M., Sloane Stanley G.H. A simple method for the isolation and purification of total lipids from animal tissues // J. Biol. Chem. 1957. V. 226(1). P. 497–509.
- Lee J., Durst R.W., Wrolstad R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study // J. AOAC Int. 2005. V. 88(5). P. 1269–1278.
- Lopez-Pardo R., Ruiz de Galarreta J.I., Ritter E. Selection of housekeeping genes for qRT-PCR analysis in potato tubers under cold stress // Mol. Breeding. 2013. V. 31. P. 39–45. https://doi.org/10.1007/s11032-012-9766-z
- Tang X., Zhang N., Si H., Calderón-Urrea A. Selection and validation of reference genes for RT-qPCR ana- lysis in potato under abiotic stress // Plant Methods. 2017. V. 13. P. 85. https://doi.org/10.1186/s13007-017-0238-7
- Heijde M., Binkert M., Yin R. et al. Constitutively active UVR8 photoreceptor variant in Arabidopsis // Proc. Natl Acad. Sci. USA. 2013. V. 110. P. 20326–20331. https://doi.org/10.1073/pnas.1314336110
- Nascimento L.B.D.S., Tattini M. Beyond photoprotection: The multifarious roles of flavonoids in plant terrestrialization // Int. J. Mol. Sci. 2022. V. 23(9). https://doi.org/10.3390/ijms23095284
- Jezek M., Allan A.C., Jones J.J., Geilfus C.M. Why do plants blush when they are hungry? // New Phytol. 2023. V. 239(2). P. 494–505. https://doi.org/10.1111/nph.18833
- Shi L., Li X., Fu Y., Li C. Environmental stimuli and phytohormones in anthocyanin biosynthesis: A comprehensive review // Int. J. Mol. Sci. 2023. V. 24(22). https://doi.org/10.3390/ijms242216415
- Wingler A., Tijero V., Müller M. et al. Interactions between sucrose and jasmonate signalling in the response to cold stress // BMC Plant Biol. 2020. V. 20(1). P. 176. https://doi.org/10.1186/s12870-020-02376-6
- Tena N., Martín J., Asuero A.G. State of the art of anthocyanins: antioxidant activity, sources, bioavailability, and therapeutic effect in human health // Anti- oxidants (Basel). 2020. V. 9(5). https://doi.org/10.3390/antiox9050451
- D'Amelia V., Aversano R., Batelli G. et al. High AN1 variability and interaction with basic helix-loop-helix co-factors related to anthocyanin biosynthesis in potato leaves // Plant J. 2014. V. 80(3). P. 527–540. https://doi.org/10.1111/tpj.12653
- Ahmed N.U., Park J.I., Jung H.J. et al. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa // Funct. Integr. Genomics. 2015. V. 15(4). P. 383–394. https://doi.org/10.1007/s10142-014-0427-7
- Zhang B., Hu Z., Zhang Y. et al. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica oleracea var. acephala f. tricolor) // Plant Cell Rep. 2012. V. 31. P. 281–289. https://doi.org/ 10.1007/s00299-011-1162-3
- Gangappa S.N., Botto J.F. The multifaceted roles of HY5 in plant growth and development // Mol. Plant. 2016. V. 9(10). P. 1353–1365. https://doi.org/10.1016/j.molp.2016.07.002
- Gouot J.C., Smith J.P., Holzapfel B.P. et al. Grape berry flavonoids: A review of their biochemical responses to high and extreme high temperatures // J. Exp. Bot. 2019. V. 70(2). P. 397–423. https://doi.org/10.1093/jxb/ery392
- Tan Y., Wen B., Xu L. et al. High temperature inhi- bited the accumulation of anthocyanin by promoting ABA catabolism in sweet cherry fruits // Front. Plant Sci. 2023. V. 14. 1079292. https://doi.org/10.3389/fpls.2023.1079292
补充文件
