Dried fruits marketed in Russian: toxigenic mold contamination

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Introduction. Dried fruits are a valuable source of dietary fibre, many vitamins and minerals in the population’s diet. However, the high content of readily available carbohydrates makes this type of product vulnerable to mould contamination. The greatest danger among which are toxigenic species. But there is practically no scientific information about the contamination presented on the Russian market dried fruits with moulds producing mycotoxins. That does not allow judging about this aspect of food safety. 

Materials and methods. Contamination with moulds and bacteria of 57 samples of dried fruits of 7 species popular in Russia was studied using cultural methods of analysis. Monospore isolates of moulds were isolated from dried fruits; in vitro mycotoxins production studied; by UHPLC-MS / MS analyzed mycotoxins in the multidetection mode.

Results and discussion. In general, the microbial contamination of dried fruits was low: 87.7% of the samples met the established microbiological standards, in most cases, moulds caused it. At the same time, the highest frequency and levels of contamination were found in dates. Aspergillus sp. dominated in the micoflora of all types of dried fruits. Among the isolated 33 strains of moulds, 45.5% turned out to be toxigenic and, in vitro, were capable of biosynthesis of significant amounts of several types of mycotoxins, including emergent mycotoxins. Fumonisin- and ochratoxin-producing activities have been found in Aspergillus strains of the Nigri section. In model experiments, the accumulation of mycotoxins in individual strains exceeded the level normalized in grain products, including (in μg/kg): for aflatoxins B1 - more than 32000 and B2 - 3230; fumonisin B2 - more than 3100; ochratoxin A up to 4.3; for emergent accumulation reached: sterigmatocystin up to 6218220 and citreoviridine - 153. 

Conclusion. Moulds are the main type of microflora that contaminates dried fruits. The ability of mould isolates from dried fruits to form mycotoxins has been established, among which highly toxigenic strains have been identified. This indicates the presence of a potential risk of contamination of this type of food with unregulated mycotoxins and a possible increase in their content in the diets of consumers. The results obtained substantiate the need for extensive monitoring of mycotoxin producers in dried fruits. This is important for predicting the risk of toxin formation and identifying the relationship of specific mycotoxins with certain types of dried fruits. The presence of toxigenic activity of moulds isolated from dried fruits has been shown in Russia for the first time.

Contribution:

Minaeva L.P. — concept and design of the study, collection and processing of material of microbiological studies, writing and editing of the manuscript, responsibility for the integrity of all parts of the article;

Polyanina A.S., Efimochkina N.R. — collection and processing of material of microbiological studies;

Kiseleva M.G., Chalyy Z.A. — collection and processing of material UHPLC-MS/MS research results;

Sheveleva S.A. — editing.

All authors — approval of the final version of the article.

Conflict of interest. The authors declare no conflict of interest.

Acknowledgement. The study was supported by Russian Science Foundation (grant No 18‐16‐00077).

Авторлар туралы

Lyudmila Minaeva

Federal Research Centre of Nutrition and Biotechnology

Хат алмасуға жауапты Автор.
Email: liuminaeva-ion@mail.ru
ORCID iD: 0000-0003-1853-5735

PhD in Technical Sciences, senior researcher at the laboratory of biosafety and nutrimicrobiome analysis, Federal Research Centre of Nutrition and Biotechnology, Moscow, 109240, Russian Federation.

e-mail: liuminaeva-ion@mail.ru

Ресей

Anna Polyanina

Federal Research Centre of Nutrition and Biotechnology

Email: noemail@neicon.ru
ORCID iD: 0000-0002-2766-7716
Ресей

Mariya Kiseleva

Federal Research Centre of Nutrition and Biotechnology

Email: noemail@neicon.ru
ORCID iD: 0000-0003-1057-0886
Ресей

Zakhar Chalyy

Federal Research Centre of Nutrition and Biotechnology

Email: noemail@neicon.ru
ORCID iD: 0000-0002-9371-8163
Ресей

Natalia Efimochkina

Federal Research Centre of Nutrition and Biotechnology

Email: noemail@neicon.ru
ORCID iD: 0000-0002-9071-0326
Ресей

Svetlana Sheveleva

Federal Research Centre of Nutrition and Biotechnology

Email: noemail@neicon.ru
ORCID iD: 0000-0001-5647-9709
Ресей

Әдебиет тізімі

  1. Analysis of the market for dried vegetables, mushrooms, dried fruits and nuts in Russia in 2014–2018, forecast for 2019–2023. Available at: https://businesstat.ru/images/demo/dried_vegetables_fruits_nuts_mushrooms_russia_2019_demo_businesstat.pdf (in Russian)
  2. Isaeva E.V., Shestopal Z.A. Atlas of Diseases of Fruit and Berry Plant [Atlas bolezney plodovykh i yagodnykh kul’tur]. Kiev: Urozhay; 1991. (in Russian)
  3. Garibova L.V., Lekomtseva S.N. Basics of Mycology: Morphology and Taxonomy of Fungi and Fungi-Like Organisms [Osnovy mikologii: Morfologiya i sistematika gribov i gribopodobnykh organizmov]. Moscow: KMK; 2005. (in Russian)
  4. Tutel’yan V.A., Kravchenko L.V. Mycotoxins: Medical and Biological Aspects [Mikotoksiny (Meditsinskie i biologicheskie aspekty)]. Moscow: Meditsina; 1985. (in Russian)
  5. Agriopoulou S., Stamatelopoulou E., Varzakas T. Advances in occurrence, importance, and mycotoxin control strategies: prevention and detoxification in foods. Foods. 2020; 9(2): 137. https://doi.org/10.3390/foods9020137
  6. RASF, The Rapid Alert System for Food and Feed. Reports and publications. Available at: https://ec.europa.eu/food/safety/rasff/reports_publications_en
  7. Nielsen K., Mogensen J., Johansen M., Larsen T., Frisvad J. Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Anal. Bioanal. Chem. 2009; 395(5): 1225–42. https://doi.org/10.1007/s00216-009-3081-5
  8. Heperkan D., Moretti A., Dikmen C.D., Logrieco A.F. Toxigenic fungi and mycotoxin associated with figs in the Mediterranean area. Phytopathol. Mediterr. 2012; 51(1): 119–30. https://doi.org/10.14601/Phytopathol_Mediterr-9467
  9. Samson R.A., Noonim P., Meijer M., Houbraken J.A.M.P., Frisvad J.C., Varga J. Diagnostic tools to identify black aspergilli. Stud. Mycol. 2007; 59: 129–45. https://doi.org/10.3114/sim.2007.59.13
  10. Samson R.A., Visagie C.M., Houbraken J., Hong S.B., Hubka V., Klaassen C.H., et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud. Mycol. 2014; 78, 141–173. https://doi.org/10.1016/j.simyco.2014.07.004
  11. Han X., Jiang H., Xu J., Zhang J., Li F. Dynamic fumonisin B2 production by Aspergillus niger intented used in food industry in China. Toxins (Basel). 2017; 9(7): 217. https://doi.org/10.3390/toxins9070217
  12. Chalyy Z.A., Kiseleva M.G., Sedova I.B., Minaeva L.P., Sheveleva S.A., Tutel’yan V.A. Dried fruits marketed in Russia: multi-mycotoxin contamination. Voprosy pitaniya. 2021; 90(1): 33–9. https://doi.org/10.33029/0042-8833-2021-90-1-33-39 (in Russian)
  13. Ozer H., Imge H., Basegmez O., Ozay G. Mycotoxin risks and toxigenic fungi in date, prune and dried apricot among Mediterranean crops. Phytopathol. Mediterr. 2012; 51(1): 148–57. https://doi.org/10.14601/Phytopathol_Mediterr-9806
  14. Vinson J.A., Zubik L., Bose P., Samman N., Proch J. Dried fruits: excellent in vitro and in vivo antioxidants. J. Am. Coll. Nutr. 2005; 24(1): 44–50. https://doi.org/10.1080/07315724.2005.10719442
  15. Rico-Munoz E., Samson R.A., Houbraken J. Mould spoilage of foods and beverages: Using the right methodology. Food Microbiol. 2019; 81: 51–62. https://doi.org/10.1016/j.fm.2018.03.016
  16. Trucksess M.W., Scott P.M. Mycotoxins in botanicals and dried fruits: A review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2008; 25(2): 181–92. https://doi.org/10.1080/02652030701567459
  17. Daskaya-Dikmen C., Heperkan D. Fumonisin production of black Aspergilli in vitro, fumonisin and ochratoxin A production in figs of positive strains and their growth assessment. Toxin Rev. 2013; 32(1): 10–7. https://doi.org/10.3109/15569543.2012.756524
  18. Frisvad J.C., Hubka V., Ezekiel C.N., Hong S.B., Nováková A., Chen A.J., et al. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud. Mycol. 2019; 93: 1–63. https://doi.org/10.1016/j.simyco.2018.06.001
  19. Cary J.W., Ehrlich K.C., Beltz S.B., Harris-Coward P., Klich M.A. Characterization of the Aspergillus ochraceoroseus aflatoxin/sterigmatocystin biosynthetic gene cluster. Mycologia. 2017; 101(3): 352–62. https://doi.org/10.3852/08-173
  20. Frisvad J.C., Skouboe P., Samson R.A. Taxonomic comparison of three different groups of aflatoxin producers and a new efficient producer of aflatoxin B1, sterigmatocystin and 3-O-methylsterigmatocystin, Aspergillus rambellii sp. nov. Syst. Appl. Microbiol. 2005; 28(5): 442–53. https://doi.org/10.1016/j.syapm.2005.02.012
  21. Moretti A., Susca A., eds. Mycotoxigenic Fungi: Methods and Protocols. Totowa, New Jersey: Humana Press; 2017.
  22. de Souza Ferranti L., Fungaro M.H.P., Massi F.P., da Silva J.J., Penha R.E.S., Frisvad J.C., et al. Diversity of Aspergillus section Nigri on the surface of Vitis labrusca and its hybrid grapes. Int. J. Food Microbiol. 2018; 268: 53–60. https://doi.org/10.1016/j.ijfoodmicro.2017.12.027

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Minaeva L.P., Polyanina A.S., Kiseleva M.G., Chalyy Z.A., Efimochkina N.R., Sheveleva S.A., 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.