Mechanism of the Formation of trans- and cis-Isomers of the bis (chelate) Pd(II) and Pt(II) Complexes Based on (N,O(S, Se))-Bidentate Azomethines. А Quantum-Chemical Study

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The molecular structures and relative energies of trans- and cis-isomers of bis(chelate) complexes of Pd(II) and Pt(II) salicylal-, thiosalicylal-, and selenosalicylaldiiminates are calculated using the density functional theory. The role of the kinetic factor in the formation of the trans- and cis-isomers of the PdL2 and PtL2 complexes is studied in the framework of the model of the step-by-step formation of the bis(ligand) metal complexes ML2 (M++ + (L) → (ML)+, (ML)+ + (L)→ ML2). The competition of the trans- and cis-isomers of the PdL2 and PtL2 bis(chelate) azomethine complexes with the coordination nodes MN2O2, MN2S2, and MN2Se2 is shown to be determined by both the energy preference of one of possible configurations and activation barriers of the isomerization of the products formed in the first step of the interaction of the initial reagents.

全文:

受限制的访问

作者简介

N. Kharabayev

Research Institute of Physical and Organic Chemistry, Southern Federal University

编辑信件的主要联系方式.
Email: nkharabaev@mail.ru
俄罗斯联邦, Rostov-on-Don

D. Steglenko

Research Institute of Physical and Organic Chemistry, Southern Federal University

Email: nkharabaev@mail.ru
俄罗斯联邦, Rostov-on-Don

V. Minkin

Research Institute of Physical and Organic Chemistry, Southern Federal University

Email: nkharabaev@mail.ru
俄罗斯联邦, Rostov-on-Don

参考

  1. Garnovskii A.D., Nivorozhkin A.L., Minkin V.I. // Coord. Chem. Rev. 1993. V. 126. № 1. P. 1.
  2. Bourget-Merle. L., Lappert M.F., Severn J.R. // Chem. Rev. 2002. V. 102. № 6. P. 3031.
  3. Garnovskii A.D., Vasilchenko I.S., Garnovskii D.A., Kharisov B.I. // J. Coord. Chem. 2009. V. 62. № 2. P. 151.
  4. Kharabaev N.N., Starikov A.G., Minkin V.I. // Dokl. Chem. 2014. V. 458. P. 181.
  5. Kharabayev N.N., Starikov A.G., Minkin V.I. // J. Struct. Chem. 2016. V. 57. № 3. P. 431.
  6. Kharabayev N.N., Minkin V.I. // Russ. J. Coord. Chem. 2022. V. 48. № 12. P. 765. https://doi.org/10.1134/S1070328422700117.
  7. Faghih Z., Neshat A., Wojtczak A. et al. // Inorg. Chim. Acta. 2018. V. 471. P. 404.
  8. Tshabalala T., Ojwach S. // J. Organomet. Chem. 2018. V. 873. P. 35.
  9. Firinci R., Firinci E., Basbulbul G. et al. // Transition Met. Chem. 2019. V. 44. P. 391.
  10. Sarto L.E., Badaro W.P.D., de Gois E.P. et al. // J. Mol. Struct. 2020. V. 1204. P. 127549.
  11. Komiya N., Okada M., Fukumoto K. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 6493.
  12. Patterson A.E., Miller J.J., Miles B.A. et al. // Inorg. Chim. Acta. 2014. V. 415. P. 88
  13. Hashimoto T., Fukumoto K., Le N.H.-T. et al. // Dalton Trans. 2016. V. 45. P. 19257.
  14. Iwata S., Takahashi H., Ihara A. et al.// Transition Met. Chem. 2018. V. 43. P. 115.
  15. Martin E.M., Bereman R.D., Reibenspies J. // Inorg. Chim. Acta.1992. V.191. P. 171.
  16. Antsyshkina A.S., Porai-Koshits M.A., Vasil’chenko I.S. et al. // Proc. Nat. Acad. Sci. USSR. 1993. V. 330. P. 54.
  17. Orysyk S.I., Bon V.V., Pekhnyo V.I. // Acta Crystallogr. E. 2009. V. 65. m 1059.
  18. Orysyk S.I., Bon V.V., Pekhnyo V.I., et al. // Polyhedron. 2012. V. 38. P. 15.
  19. Al-Jibori S.A., Dayaaf N.A., Mohammed M.Y., et al. // J. Chem. Cryst. 2013. V.43. P. 365.
  20. Dutta P.K., Panda S., Zade S.S. // Inorg. Cnim. Acta. 2014. V. 411. P. 83.
  21. Kharabaev N.N., Kogan V.A., Osipov O.A. // Zh. Strukt. Khim. 1979. V. 20. № 1. P. 133.
  22. Kharabayev N.N. // Russ. J. Coord. Chem. 2017. Vol. 43. № 12. P. 807. https://doi.org/10.1134/S107032841712003X
  23. Kharabayev N.N. // Russ. J. Coord. Chem. 2019. V. 45. № 8. P. 573. https://doi.org/10.1134/S1070328419080050
  24. Parr R., Yang W. Density-Functional Theory of Atoms and Molecules. New York: Oxford University Press, 1989. 333 p.
  25. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09. Revision D.01. Wallingford CT, Gaussian, Inc., 2013.
  26. Sousa S.F., Fernandes P.A., Ramos M.J. //J. Phys. Chem. A. 2007. V. 111. № 42. Р. 10439.
  27. Burke K., Wagner L.O. // Int. J. Quantum Chem. 2013. V. 113. № 2. P. 96.
  28. Tsipis A.C. // Coord. Chem. Rev. 2014. V. 272. P. 1.
  29. Becke A.D. // Phys. Rev. A. 1988. V. 38. P. 3098.
  30. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785.
  31. Perdew J. P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865.
  32. Tao J., Perdew J.P., Staroverov V.N., Scuseria G.E. // Phys. Rev. Lett. 2003. V. 91. P. 146401.
  33. Zhurko G.A., Zhurko D.A. Chemcraft. Version 1.6. http://www.chemcraftprog.com
  34. Kharabaev N.N. // Koord. Khim. 1991. V. 17. № 5. P. 579.

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1.

下载 (125KB)
3. Scheme 2.

下载 (137KB)
4. Scheme 3.

下载 (130KB)
5. Scheme 4.

下载 (127KB)

版权所有 © Российская академия наук, 2024