Physical Modeling of the Hydroacoustic Field of a Marine Propeller

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper presents a research of the acoustic field of the propeller, including at the resonant frequencies of its blades. The research is based on a computational and experimental approach based on the combined use of numerical and experimental physical modeling. The paper shows the importance of taking into valuation the elastic resonances of the propeller in the design, demonstrates the methods of physical and numerical modeling used, which provide high accuracy in determining the resonance frequencies of the blades in water and in air. Using the example of two propeller models made of different materials, the effect of Q-factor on the levels and type of the radiation spectrum is experimentally demonstrated.

Texto integral

Acesso é fechado

Sobre autores

A. Stulenkov

Institute of Applied Physics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: stulenkov@ipfran.ru
Rússia, Nizhny Novgorod

V. Artelny

Institute of Applied Physics of the Russian Academy of Sciences

Email: stulenkov@ipfran.ru
Rússia, Nizhny Novgorod

P. Korotin

Institute of Applied Physics of the Russian Academy of Sciences

Email: stulenkov@ipfran.ru
Rússia, Nizhny Novgorod

A. Suvorov

Institute of Applied Physics of the Russian Academy of Sciences

Email: stulenkov@ipfran.ru
Rússia, Nizhny Novgorod

I. Gorbuntsov

Malakhit Marine Engineering Bureau

Email: stulenkov@ipfran.ru
Rússia, Saint Petersburg

M. Norkin

Institute of Applied Physics of the Russian Academy of Sciences

Email: stulenkov@ipfran.ru
Rússia, Nizhny Novgorod

S. Zaytseva

Institute of Applied Physics of the Russian Academy of Sciences

Email: stulenkov@ipfran.ru
Rússia, Nizhny Novgorod

Bibliografia

  1. Рождественский В.В. Кавитация. Л.: Судостроение, 1977. 248 с.
  2. Tewari A.K., Vijayakumar R. A review of methods for hydro-acoustic analysis of non-cavitating marine propellers // Trans RINA, Int. J. Maritime Eng. 2019. V. 161. Part A3.
  3. Chevalier F., Bordier L., Leblond C., Sainclair F., Sanchez J.-M., Serre G. Numerical prediction of the noise radiated from silent non cavitating marine propellers // OCEANS2019 Marseille. P. 1–4.
  4. Purwana A., Ariana I.M., Wardhana W., Handani D. Performance and Noise Prediction of Marine Propeller Using Numerical Simulation // IPTEK J. Proc. Series. 2018. № 4(1). P. 20.
  5. Wang Y., Göttsche U., Abdel-Maksoud M. Sound Field Properties of Non-Cavitating Marine Propellers // J. Marine Science and Engineering. 2020. № 8(11). P. 885.
  6. Tanttari J., Hynninen A. Acoustic Source Characterization of Marine Propulsors // J. Marine Science and Engineering. 2022. № 10. P. 1273.
  7. Ильин В.П., Левковский Ю.Л. Исследование влияния вибраций крыла на его кромочный шум // Акуст. журн. 1993. Т. 39. № 3. С. 489–497.
  8. Haimov H., et al. Propeller acoustic measurements in atmospheric towing tank // Ocean Eng. 2015. № 120. P. 190–201.
  9. Zhu C., Gaggero T., Makris N.C., Ratilal P. Underwater Sound Characteristics of a Ship with Controllable Pitch Propeller // J. Marine Science and Engineering. 2022. № 10. P. 328.
  10. Рутенко А.Н., Ущиповский В.Г. Оценки акустических шумов, генерируемых вспомогательными судами, работающими с нефтедобывающими платформами // Акуст. журн. 2015. Т. 61. № 5. С. 605–613.
  11. Staszewski W.J., bin Jenal R., Klepka A., Szwedo M., Uhl T. A Review of Laser Doppler Vibrometry for Structural Health Monitoring Applications // Key Eng. Materials. 2012. V. 518. P. 1–15.
  12. Rothberg S.J., et al. An international review of laser Doppler vibrometry: Making light work of vibration measurement // Optics and Lasers in Eng. 2017. V. 99. P. 11–22.
  13. Артельный В.В., Родионов А.А., Стуленков А.В. Повышение частотного разрешения при измерении вибраций вращающихся тел с помощью лазерной виброметрии с неподвижным лучом // Акуст. журн. 2023. Т. 69. № 3. С. 351–356.
  14. Стуленков А.В., Коротин П.И., Суворов А.С. Новые применения лазерной виброметрии // Изв. РАН. Сер. физ. 2020. Т. 84. № 6. С. 824–828.
  15. Фахи Ф.Д. Некоторые приложения принципа взаимности в экспериментальной виброакустике // Акуст. журн. 2003. Т. 49. № 2. С. 262–277.
  16. Suvorov A.S., Sokov E.M., Vyushkina I.A. Regular algorithm for the automatic refinement of the spectral characteristics of acoustic finite element models // Acoustical Physics. 2016. V. 62. № 5. P. 593–599.
  17. Suvorov A.S., Sevriukov O.F., Zaitseva S.G., et al. High-performance CATEC software for computational acoustics // J. Applied Mathematics and Physics. V. 11. P. 2515–2522.
  18. Суворов А.С., Соков Е.М., Вировлянский А.Л., Еремеев В.О., Балакирева Н.В. Метод конечно-элементного моделирования гидродинамического шума, возникающего при обтекании упругих тел // Акуст. журн. 2023. Т. 69. № 6. С. 713–721.
  19. Salin M.B., Sokov E.M., Suvorov A.S. Method of mode analysis for mechanoacoustic systems. // Mechanics of Solids. 2020. V. 55. № 8. P. 1318–1327.
  20. Суворов А.С., Коротин П.И., Артельный В.В., Артельный П.В., Соков Е.М., Салин М.Б., Вьюшкина И.А. Методология расчетно-экспериментального моделирования виброакустических характеристик сложных механоакустических систем // Изв. РАН. Сер. физ. 2016. Т. 80. № 10. С. 1384–1388.
  21. Суворов А.С., Соков Е.М., Артельный П.В. Численное моделирование излучения звука с использованием акустических контактных элементов // Акуст. журн. 2014. Т. 60. № 6. С. 663–672.
  22. Cалин М.Б., Соков Е.М., Суворов А.С. Численный метод исследования акустических характеристик сложных упругих систем на основе суперэлементов и аналитических граничных условий // Гидроакустика. 2011. № 14. С. 36–56.
  23. Salin M.B., Smirnov S.A., Suvorov A.S., Usacheva I.A., Vyushkina I.A. Integral absorbing boundary conditions optimized for modelling of acoustic radiation of elongated bodies // J. Applied Mathematics. 2022. Article ID9524376.
  24. Зверев А.Я. Сравнительный анализ акустических характеристик композитной и металлической панелей при звуковом и псевдозвуковом возбуждении // Акуст. журн. 2023. Т. 69. № 2. С. 249–260.
  25. Ghassemi H., Fadavie M., Nematy D. Hydro-Structure Analysis of Composite Marine Propeller under Pressure Hydrodynamic Loading // Amer. J. Mechanical Engineering. 2015. V. 3. № 2. P. 41–46.
  26. Shayanpoor A.A., Hajivand A., Moore M. Hydroelastic Analysis of Composite Marine Propeller Basis Fluid-Structure Interaction (FSI) // IJMT. 2020. № 13. P. 51–59.
  27. Kishore M.L.P., Singh V.K., Behra R.K., Saran C.S., Paswan M., Kumar K. Hydrodynamic characteristics of marine composite propeller blade using a numerical approach // IJAAS2021. V. 10. № 1. P. 20–27.
  28. Kim J.-H., Lee H., Kim S.-H., Choi H.-Y., Hah Z.-H., Seol H.-S. Performance Prediction of Composite Marine Propeller in Non-Cavitating and Cavitating Flow // Appl. Sci. 2022. № 12. P. 5170.
  29. Paik B.-G., Kim G.-D., Kim K.-Y., Seol H.-S., Hyun B.-S., Lee S.-G., Jung Y.-R. Investigation on the performance characteristics of the flexible propellers // Ocean Eng. 2013. № 73. P. 139–148.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The device with the investigated propeller at the landfill

Baixar (256KB)
3. Fig. 2. Diagram of screw measurements in air in an anechoic chamber

Baixar (57KB)
4. Рис. 3. Сравнение узкополосных и третьоктавных спектров расчетных и экспериментальных коэффициентов передачи в воздухе. Тонкие кривые — узкополосные коэффициенты, толстые кривые — коэффициенты в третьоктавных полосах. Цифрами обозначены номера синфазных мод лопастей. На картинке справа изображена экспериментальная форма колебаний № 3

Baixar (268KB)
5. Fig. 4. Measurement scheme in water in stop mode

Baixar (55KB)
6. Fig. 5. Comparison of propeller resonances excited in the calculation for a free screw (blue curve) and in the experiment (green curve is a free screw, red curve is a screw on the model) at the location of the hydrophone in water. The numbers indicate the common-mode modes for each waveform

Baixar (109KB)
7. Fig. 6. Pressure spectra for different propeller rotation speeds, the black curve is the background noise level. Blue numbers indicate in-phase oscillation modes, red numbers indicate non-in-phase modes

Baixar (122KB)
8. Fig. 7. Comparison of the resonances of the propeller excited in the calculation with the measurement results during shaft rotation with a frequency of 0.025 f0 Hz. The numbers indicate the common-mode modes for each waveform

Baixar (117KB)
9. Fig. 8. Comparison of pressure levels recorded on the foot with a screw (blue curve) and without a screw (red curve) when the shaft rotates at a frequency of 0.025 f0 Hz with the pressure recorded on the move (green curve) at the same shaft revolutions as on the foot. The black curve is the background noise level. Arabic numerals indicate ranges containing modes of oscillation forms, Roman numerals indicate discrete components whose frequencies depend on revolutions

Baixar (124KB)
10. Fig. 9. Comparison of transmission coefficients in air for duralumin and caprolon screws: blue curve — duralumin screw, experiment; red curve — caprolon screw, experiment; green curve — caprolon screw, calculation. The numbers indicate the common—mode numbers of the blades (blue color — duralumin screw, red color - nylon screw)

Baixar (110KB)
11. Fig. 10. Comparison of the acoustic response in water of two freely suspended screws made of different materials under shock excitation

Baixar (95KB)
12. Fig. 11. Comparison of the emission spectra of two screws when the device is moving with a shaft speed of 0.025 f0. Black numbers indicate ranges containing modes of oscillation forms, Roman numerals indicate harmonics that depend on revolutions

Baixar (102KB)

Declaração de direitos autorais © The Russian Academy of Sciences, 2024