Accounting for viscous and thermal effects in time in computational problems of acoustics

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The problem of acoustic wave propagation with thermoviscous boundary conditions is studied. For thermoviscous boundary conditions, a time-dependent formulation is presented based on the concept of a fractional derivative. A weak formulation of the problem is given, which is reduced to a system of Volterra-type integro-differential equations using the finite element method. An implicit finite-difference scheme is constructed for the numerical solution of this system. To verify it, the problem of sound propagation in a thin pipe is modeled, the results of numerical modeling are compared with the analytical solution.

全文:

受限制的访问

作者简介

А. Korolkov

University of Manchester

Email: laptev97@bk.ru
英国, Oxford Road, Manchester, M13 9PL

A. Laptev

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: laptev97@bk.ru
俄罗斯联邦, Leninskie Gory, Moscow, GSP-1, 119991

A. Shanin

Lomonosov Moscow State University

Email: laptev97@bk.ru
俄罗斯联邦, Leninskie Gory, Moscow, GSP-1, 119991

参考

  1. Pierce A.D. Acoustics, An Introduction to Its Physical Principles and Applications. Acoustical Society of America, 2019. Разд. 10.4.
  2. Tijdeman H. On the propagation of sound waves in cylindrical tubes // J. Sound Vibration. 1975. V. 39. № 1. P. 1–33.
  3. Richards W.B. Propagation of Sound Waves in Tubes of Noncircular Cross Section. NASA Technical Paper 2601, NASA Lewis Research Center, Cleveland, Ohio, 1986.
  4. Каспарянц А.А. К вопросу о распространении звуковых волн в “газах и жидкостях Ван-дер-Ваальса” // Акуст. журн. 1958. Т. 4. № 4. С. 325–332.
  5. Rienstra S.W., Hirschberg A. An Introduction in Acoustics. Extended and revised version of report IWDE92–06. Eindhoven University of Technology, 2016. Разд. 4.5.
  6. Searby G., Habibullah M., Nicole A., Laroche E. Prediction of the Efficiency of Acoustic Damping Cavities // J. Propulsion and Power. 2008. V. 24. № 3. P. 516–523.
  7. Berggren M., Bernland A., Noreland D. Acoustic boundary layers as boundary conditions // J. Computational Physics. 2018. V. 371. P. 633–650.
  8. Зенкевич О., Морган К. Конечные элементы и аппроксимация. М.: Мир, 1986. 318 с.
  9. Linz P. Analytical and Numerical Methods for Volterra Equations. Studies for Applied Mathematics. 1985. Разд. 11.4.
  10. Zwikker C., Kosten C.W. Sound Absorbing Materials. Elsevier Pub. Co., 1949.
  11. Stinson M.R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape // J. Acoust. Soc. Am. 1991. V. 89. № 2. P. 550–558.
  12. Weston D.E. The Theory of Propagation of Plane Sound Waves in Tubes // Proc. of the Physical Society. Section B. 1953. V. 66. № 8. P. 695–709.
  13. Allard J.F., Atalla N. Propagation of Sound in Porous Media. John Wiley & Sons, Ltd, 2009. Разд. 4.4 и 4.7.
  14. Craggs A., Hildebrandt J.G. Effective densities and resistivities for acoustic propagation in narrow tubes // J. Sound Vibration. 1984. V. 92. № 3. P. 321–331.
  15. Holm S. Waves with Power-Law Attenuation. Acoustical Society of America, 2019. Разд. 1.4.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Approximate view of the region Ω.

下载 (39KB)
3. Fig. 2. Geometry of the model.

下载 (11KB)
4. Fig. 3. Comparison of numerical simulation with analytical solution. The dotted line indicates the pulse at a distance of 50 cm from the emitting surface without taking into account thermoviscous effects, the dashed line indicates taking into account thermoviscous effects, and the solid line indicates the analytical solution (12).

下载 (26KB)
5. Fig. 4. Dependence of the difference between the numerical and analytical solutions on the grid step.

下载 (24KB)

版权所有 © The Russian Academy of Sciences, 2024