Technological methods for reducing the sintering temperature of ceramics based on the BZN cubic pyrochlore system
- Авторлар: Marakhovskiy М.А.1, Talanov М.V.2
-
Мекемелер:
- Institute of High Technologies and Piezotechnics, Southern Federal University
- Moscow Institute of Physics and Technology (National Research University)
- Шығарылым: Том 88, № 5 (2024)
- Беттер: 800-804
- Бөлім: Physics of ferroelectrics
- URL: https://medjrf.com/0367-6765/article/view/654688
- DOI: https://doi.org/10.31857/S0367676524050175
- EDN: https://elibrary.ru/QEEHYQ
- ID: 654688
Дәйексөз келтіру
Аннотация
For the first time, ceramics of the Bi2O3-ZnO-Nb2O5 system with high density, homogeneous microstructure and high dielectric parameters (higher by 30% in comparison with traditional ceramic technologies) were obtained by spark plasma sintering. The mechanisms of ceramic frame formation have been studied and technological modes of sintering have been optimized.
Негізгі сөздер
Толық мәтін

Авторлар туралы
М. Marakhovskiy
Institute of High Technologies and Piezotechnics, Southern Federal University
Хат алмасуға жауапты Автор.
Email: marmisha@mail.ru
Ресей, Rostov-on-Don
М. Talanov
Moscow Institute of Physics and Technology (National Research University)
Email: marmisha@mail.ru
Ресей, Moscow
Әдебиет тізімі
- Du H., Yao X. // Mater. Res. Bull. 2005. V. 40. No. 9. P. 1527.
- Cann D.P., Randall C.A., Shrout T.R. // Solid State Commun. 1996. V. 100. No. 7. P. 529.
- Baker A., Lanagan M., Randall C. et al. // Int. J. Appl. Ceram. Technol. 2005. V. 2. No. 6. P. 514.
- Nino J.C. // J. Appl. Phys. 2001. V. 89. No. 8. P. 4512.
- Levin I., Amos T.G., Nino J.C. et al. // J. Solid State Chem. 2002. V. 168. No. 1. P. 69.
- Liu D., Liu Yi., Huang Sh.Q. et al. // J. Amer. Ceram. Soc. 1993. V. 76. P. 2129.
- Wang X., Wang H., Yao X. // J. Amer. Ceram. Soc. 1997. V. 80. P. 2745.
- Melot B., Rodriguez E., Proffen Th. et al. // Mater. Res. Bull. 2006. V. 41. No. 5. P. 961.
- Kamba S., Porokhonskyy V., Pashkin A. et al. // Phys. Rev. B, 2002. V. 66. No. 5. P. 054106.
- Radosavljevic I., Evans J., Sleight A. // J. Solid State Chem. 1998. V. 136. No. 1. P. 63.
- Bush A.A., Talanov M.V., Stash A.I. et al. // Cryst. Growth Des. 2020. V. 20. No. 2. P. 824.
- Liu Y., Withers R.L., Nguyen H.B. et al. // J. Solid State Chem. 2009. V. 182. No. 10. P. 2748.
- Nino J.C., Lanagan M.T., Randall C.A. // J. Appl. Phys. 2001. V. 89. Art. No. 4512.
- Liang K., Gao L., Fang Z. et al. // J. Eur. Ceram. 2021. V. 41. P. 3425.
- Youn H.-J., Sogabe T., Randall C.A. et al. // J. Amer. Ceram. Soc. 2001. V. 84. No. 11. P. 2557.
- Talanov M.V. // In: Pyrochlore ceramics: properties, processing, and applications. Elsevier Series on Advanced Ceramic Materials. 2022. P. 295.
- Valant M., Davies P.K. // J. Mater. Sci. 1999. V. 34. No. 5437.
- Chen Y., Qi J., Zhang M. et al. // J. Adv. Ceram. 2022. V. 11. No. 7. P. 1179.
- Tagantsev A.K., Lu J., Stemmer S. // Appl. Phys. Lett. 2005. V. 86. No. 3. Art. No. 032901.
- Wang R., Xie R., Sekiya T., Shimojo Y. // Mater. Res. Bull. 2004. V. 39. No. 11. P. 1709.
- Han B., Zhao C., Zhu Z-X. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. No. 39. P. 34078.
- Marakhovsky M.A., Panich A.A., Talanov M.V. et. al // Ferroelectrics. 2021. V. 575. No. 1. P. 43.
- Marakhovsky M.A., Panich A.A., Talanov M.V., Marakhovsky V.A. // Ferroelectrics. 2020. V. 560. No. 1. P. 1.
- Niemiec P., Bochenek D., Brzezinska D. // Ceram. Int. 2023. V.49. No. 22. P. 35687.
- Wang T., Zhang H., Cheng L. et al. // Ceram. Int. 2022. V. 48. No. 9. P. 12800.
- Мараховский М.А., Таланов М.В., Панич А.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 9. С. 1279; Marakhovskiy M.A., Talanov M.V., Panich A.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 9. P. 1317.
- Мараховский М.А., Панич А.А., Таланов М.В., Мараховский В.А. // Изв. РАН. Сер. физ. 2020. Т. 84. № 11. С. 1667; Marakhovsky M.A., Panich A.A., Talanov M.V., Marakhovsky V.A. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 11. P. 1419.
- Valant M., Davies P.K. // J. Amer. Ceram. Soc. 2000. V. 83. No. 1. P. 147.
- Fruth V., Ianculescu A., Berger D. et al. // J. Eur. Ceramic. 2006. V. 26. No. 14. P. 3011.
- Cavaliere P., Sadeghi B., Shabani A. // In: Spark plasma sintering of materials. Advances in processing and applications. Cham: Springer, 2019. P. 3.
- Zhang Z.H., Wang F.C., Wang L. et al. // Mater. Charact. 2008. V. 59. No. 3. P. 329.
Қосымша файлдар
Қосымша файлдар
Әрекет
1.
JATS XML
2.
Fig. 1. Powder X-ray diffraction patterns of the studied samples obtained by different sintering methods.
Жүктеу (161KB)
3.
Fig. 2. Images of the microstructure of ceramic samples sintered by different methods: SPS at Tsinter = 850 °C (a), 870 °C (b), 900 °C (c), 930 °C (d) and 950 °C (d) and ATM at Tsinter = 1000 °C (e).
Жүктеу (722KB)
4.
Fig. 3. Images of the microstructure of ceramic samples sintered by the SPS method at a temperature of 950 °C with different isothermal holding times: 0 min (a), 0.5 min (b), 1 min (c).
Жүктеу (292KB)
