Technological methods for reducing the sintering temperature of ceramics based on the BZN cubic pyrochlore system

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For the first time, ceramics of the Bi2O3-ZnO-Nb2O5 system with high density, homogeneous microstructure and high dielectric parameters (higher by 30% in comparison with traditional ceramic technologies) were obtained by spark plasma sintering. The mechanisms of ceramic frame formation have been studied and technological modes of sintering have been optimized.

全文:

受限制的访问

作者简介

М. Marakhovskiy

Institute of High Technologies and Piezotechnics, Southern Federal University

编辑信件的主要联系方式.
Email: marmisha@mail.ru
俄罗斯联邦, Rostov-on-Don

М. Talanov

Moscow Institute of Physics and Technology (National Research University)

Email: marmisha@mail.ru
俄罗斯联邦, Moscow

参考

  1. Du H., Yao X. // Mater. Res. Bull. 2005. V. 40. No. 9. P. 1527.
  2. Cann D.P., Randall C.A., Shrout T.R. // Solid State Commun. 1996. V. 100. No. 7. P. 529.
  3. Baker A., Lanagan M., Randall C. et al. // Int. J. Appl. Ceram. Technol. 2005. V. 2. No. 6. P. 514.
  4. Nino J.C. // J. Appl. Phys. 2001. V. 89. No. 8. P. 4512.
  5. Levin I., Amos T.G., Nino J.C. et al. // J. Solid State Chem. 2002. V. 168. No. 1. P. 69.
  6. Liu D., Liu Yi., Huang Sh.Q. et al. // J. Amer. Ceram. Soc. 1993. V. 76. P. 2129.
  7. Wang X., Wang H., Yao X. // J. Amer. Ceram. Soc. 1997. V. 80. P. 2745.
  8. Melot B., Rodriguez E., Proffen Th. et al. // Mater. Res. Bull. 2006. V. 41. No. 5. P. 961.
  9. Kamba S., Porokhonskyy V., Pashkin A. et al. // Phys. Rev. B, 2002. V. 66. No. 5. P. 054106.
  10. Radosavljevic I., Evans J., Sleight A. // J. Solid State Chem. 1998. V. 136. No. 1. P. 63.
  11. Bush A.A., Talanov M.V., Stash A.I. et al. // Cryst. Growth Des. 2020. V. 20. No. 2. P. 824.
  12. Liu Y., Withers R.L., Nguyen H.B. et al. // J. Solid State Chem. 2009. V. 182. No. 10. P. 2748.
  13. Nino J.C., Lanagan M.T., Randall C.A. // J. Appl. Phys. 2001. V. 89. Art. No. 4512.
  14. Liang K., Gao L., Fang Z. et al. // J. Eur. Ceram. 2021. V. 41. P. 3425.
  15. Youn H.-J., Sogabe T., Randall C.A. et al. // J. Amer. Ceram. Soc. 2001. V. 84. No. 11. P. 2557.
  16. Talanov M.V. // In: Pyrochlore ceramics: properties, processing, and applications. Elsevier Series on Advanced Ceramic Materials. 2022. P. 295.
  17. Valant M., Davies P.K. // J. Mater. Sci. 1999. V. 34. No. 5437.
  18. Chen Y., Qi J., Zhang M. et al. // J. Adv. Ceram. 2022. V. 11. No. 7. P. 1179.
  19. Tagantsev A.K., Lu J., Stemmer S. // Appl. Phys. Lett. 2005. V. 86. No. 3. Art. No. 032901.
  20. Wang R., Xie R., Sekiya T., Shimojo Y. // Mater. Res. Bull. 2004. V. 39. No. 11. P. 1709.
  21. Han B., Zhao C., Zhu Z-X. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. No. 39. P. 34078.
  22. Marakhovsky M.A., Panich A.A., Talanov M.V. et. al // Ferroelectrics. 2021. V. 575. No. 1. P. 43.
  23. Marakhovsky M.A., Panich A.A., Talanov M.V., Marakhovsky V.A. // Ferroelectrics. 2020. V. 560. No. 1. P. 1.
  24. Niemiec P., Bochenek D., Brzezinska D. // Ceram. Int. 2023. V.49. No. 22. P. 35687.
  25. Wang T., Zhang H., Cheng L. et al. // Ceram. Int. 2022. V. 48. No. 9. P. 12800.
  26. Мараховский М.А., Таланов М.В., Панич А.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 9. С. 1279; Marakhovskiy M.A., Talanov M.V., Panich A.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 9. P. 1317.
  27. Мараховский М.А., Панич А.А., Таланов М.В., Мараховский В.А. // Изв. РАН. Сер. физ. 2020. Т. 84. № 11. С. 1667; Marakhovsky M.A., Panich A.A., Talanov M.V., Marakhovsky V.A. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 11. P. 1419.
  28. Valant M., Davies P.K. // J. Amer. Ceram. Soc. 2000. V. 83. No. 1. P. 147.
  29. Fruth V., Ianculescu A., Berger D. et al. // J. Eur. Ceramic. 2006. V. 26. No. 14. P. 3011.
  30. Cavaliere P., Sadeghi B., Shabani A. // In: Spark plasma sintering of materials. Advances in processing and applications. Cham: Springer, 2019. P. 3.
  31. Zhang Z.H., Wang F.C., Wang L. et al. // Mater. Charact. 2008. V. 59. No. 3. P. 329.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Powder X-ray diffraction patterns of the studied samples obtained by different sintering methods.

下载 (161KB)
3. Fig. 2. Images of the microstructure of ceramic samples sintered by different methods: SPS at Tsinter = 850 °C (a), 870 °C (b), 900 °C (c), 930 °C (d) and 950 °C (d) and ATM at Tsinter = 1000 °C (e).

下载 (722KB)
4. Fig. 3. Images of the microstructure of ceramic samples sintered by the SPS method at a temperature of 950 °C with different isothermal holding times: 0 min (a), 0.5 min (b), 1 min (c).

下载 (292KB)

版权所有 © Russian Academy of Sciences, 2024