Application of Square-Wave Stripping Voltammetry for the Analysis of Electrodeposits Based on Lead-Bismuth

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The possibility of targeted electrodeposition of coatings in the lead-bismuth binary system is discussed. The analysis of metal content in electrodeposits was performed using square-wave stripping voltammetry of solutions simultaneously containing lead and bismuth. The obtained results were supported by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and powder X-ray diffraction analysis. The electrodeposition conditions of obtaining Pb7Bi3 ε-phase, which is promising for the application in superconducting microelectronics, were found.

Texto integral

Acesso é fechado

Sobre autores

I. Voronin

Lomonosov Moscow State University

Email: kirill@inorg.chem.msu.ru
Rússia, Moscow

S. Sotnichuk

Lomonosov Moscow State University

Email: kirill@inorg.chem.msu.ru
Rússia, Moscow

I. Kolesnik

Lomonosov Moscow State University; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: kirill@inorg.chem.msu.ru
Rússia, Moscow; Moscow

K. Napolsky

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: kirill@inorg.chem.msu.ru
Rússia, Moscow

Bibliografia

  1. Niwata, M., Masutomi, R., and Okamoto, T., Magnetic-field-induced superconductivity in ultrathin Pb films with magnetic impurities, Phys. Rev. Lett., 2017, vol. 119, p. 257001.
  2. Nguyen, T.D., Frydman, A., and Bourgeois, O., Investigation of specific heat in ultrathin two-dimensional superconducting Pb, Phys. Rev. B, 2020, vol. 101, p. 014509.
  3. Pinheiro, L.B.L.G., Jiang, L., Abbey, E.A., Chaves, Davi A.D., Chiquito, A.J., Johansen, T.H., Van de Vondel, J., Xue, C., Zhou, Y.-H., Silhanek, A.V., Ortiz, W.A., and Motta, M., Magnetic flux penetration in nanoscale wedge-shaped superconducting thin films, Phys. Rev. B, 2022, vol. 106, p. 224520.
  4. Zhang, A.-L., Jiang, W.-Y., Chen, X.-H., Zhang, X.-K., Lu, W.-L., Chen, F., Feng, Z.-J., Cao, S.-X., Zhang, J.-C., and Ge, J.-Y., Anomalous magnetization jumps in granular Pb superconducting films, Curr. Appl. Phys., 2022, vol. 35, p. 32.
  5. Paul, S., Biswas, S., and Gupta, A.K., Micron size superconducting quantum interference devices of lead (Pb), Supercond. Sci. Technol., 2017, vol. 30, p. 025017.
  6. Nuclear Energy Agency (2015), Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies, Paris: OECD Publishing, 2015. 949 p.
  7. Gokcen, N.A., The Bi-Pb (bismuth-lead) system, J. Phase Equilibria, 1992, vol 13, p. 21.
  8. Rasmussen, S.E. and Lundtoft, B., Crystal data for Pb7Bi3, a superconducting ε-phase in the Pb–Bi system, Powder Diffr., 1987, vol. 2, p. 28.
  9. Evetts, J.E. and Wade, J.M.A., Superconducting properties and the phase diagrams of the Pb–Bi and Pb-In alloy systems, J. Phys. Chem. Solids, 1970, vol. 31, p. 973.
  10. Gandhi, A.C., Chan, T.S., and Wu, S.Y., Phase diagram of PbBi alloys: structure-property relations and the superconducting coupling, Supercond. Sci. Technol., 2017, vol. 30, p. 105010.
  11. Chang, M S., Mohd Salleh, M.A.A., and Halin, D.S.C., A short review: properties of superconducting solder, IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 957, p. 012059.
  12. Huang, H.-C.W. and Gilbert, B.L., Preparation of Pb–Bi film by alloy evaporation I: film composition control, Thin Solid Films, 1982, vol. 91, p. 201.
  13. Li, P., Xie, K., Li, L., Li, X., Xia, Y., Zhang, R., and Qin, S., Epitaxial growth of one-monolayer Pb1−xBix alloy films, Phys. Status Solidi B, 2022, vol. 259, p. 2200095.
  14. Strukov, G.V., Stolyarov, V.S., Strukova, G.K., and Zverev, V.N., The superconducting properties of nanostructured Pb7Bi3 films obtained by pulse electroplating, Physica C, 2012, vol. 483, p. 162.
  15. Wang, X.-W., He, Z.-C., Li, J.-S., and Yuan, Z.-H., A facile method of fabricating PbBi alloy nanowires with controlled component proportion, J. Alloys Compd., 2014, vol. 595, p. 221.
  16. Давыдов, А.Д., Волгин, В.М. Электрохимическое локальное безмасковое микро/нано размерное осаждение, растворение и оксидирование металлов и полупроводников (обзор). Электрохимия. 2020. Т. 56. С. 56. [Davydov, A.D. and Volgin, V.M., Electrochemical local maskless micro/nanoscale deposition, dissolution, and oxidation of metals and semiconductors (a review), Russ. J. Eleсtrochem., 2020, vol. 56, p. 52.]
  17. Goncharova, A.S., Napolskii, K.S., Skryabina, O.V., Stolyarov, V.S., Levin, E.E., Egorov, S.V., Eliseev, A.A., Kasumov, Yu.A., Ryazanov, V.V., and Tsirlina, G.A., Bismuth nanowires: electrochemical fabrication, structural features, and transport properties, Phys. Chem. Chem. Phys., 2020, vol. 22, p. 14953.
  18. Леонтьев, А.П., Напольский, К.С. Численное моделирование вольтамперограмм и хроноамперограмм для модифицированного пористой пленкой электрода. Электрохимия. 2022. Т. 58. С. 508. [Leontiev, A.P. and Napolskii, K.S., Numerical simulation of chronoamperograms and voltammograms for electrode modified with nanoporous film, Russ. J. Eleсtrochem., 2022, vol. 58, p. 741.]
  19. Бограчев, Д.А., Кабанова, Т.Б., Давыдов, А.Д. Анализ влияния концентрационной зависимости тока обмена на электроосаждение металла в нанопорах темплата. Электрохимия. 2023. Т. 59. С. 501. [Bograchev, D.A., Kabanova, T.B., and Davydov A.D., Analysis of effect of concentration dependence of exchange current on metal electrodeposition into template nanopores, Russ. J. Eleсtrochem., 2023, vol. 59, p. 651.]
  20. Ноян, А.А., Колесник, И.В., Леонтьев, А.П., Напольский, К.С. Электрокристаллизация металлов в каналах пористых пленок анодного оксида алюминия: реальная структура темплата и количественная модель электроосаждения. Электрохимия. 2023. Т. 59. С. 378. [Noyan, A.A., Kolesnik, I.V., Leontiev, A.P., and Napolskii, K.S., Electrocrystallization of metals in channels of porous films of anodic aluminum oxide: The real template structure and the quantitative model of electrodeposition, Russ. J. Eleсtrochem., 2023, vol. 59, p. 489.]
  21. Волгин, В.М., Кабанова, Т.Б., Гнидина, И.В., Давыдов, А.Д. Моделирование формирования металлических микроструктур локальным электроосаждением на электропроводной подложке. Электрохимия. 2023. Т. 59. С. 483. [Volgin, V.M., Kabanova, T.B., Gnidina, I.V., and Davydov, A.D., Modeling of the metal microstructure formation by local electrodeposition onto conducting substrates, Russ. J. Eleсtrochem., 2023, vol. 59, p. 635.]
  22. Jordan, M., Electrodeposition of lead and lead alloys, in Modern electroplating, Schlesinger, M. and Paunovic, M., New Jersey, NJ: Wiley, 2010. p. 249.
  23. Fil’, T.I., Khimchenko, Yu.I., Isai, V.N., and Romanova, A.V., Electrodeposition and an X-ray structural study of fine lead-bismuth alloy powders, Sov. Powder Metall. Met. Ceram., 1977, vol. 16, p. 167.
  24. Поветкин, В.В., Шиблева, Т.Г. Электроосаждение и свойства сплавов висмута с легкоплавкими металлами. Защита металлов. 2006. Т. 42. № 5. С. 557. [Povetkin, V.V. and Shibleva, T.G., Electrodeposition and properties of bismuth alloys with low-melting metals, Protection of Metals, 2006, vol. 42, no. 5, p. 516.]
  25. Сохраняева, А.С., Статкус, М.А., Цизин, Г.И., Золотов, Ю.А. Жидкостно-хроматографическое определение фенолов после проточного сорбционного концентрирования на сорбенте Strata-X. Журн. аналит. химии. 2010. Т. 65. № 11. С. 1181. [Sokhranyaeva, A.S., Statkus, M.A., Tsizin, G.I., and Zolotov, Y.A., Determination of phenols by liquid chromatography after online adsorption preconcentration on the Strata-X adsorbent, J. Anal. Chem., 2010, vol. 65, no. 11, p. 1155.]
  26. Выдра, Ф., Штулик, К., Юлакова, Э. Инверсионная вольтамперометрия, М.: Мир, 1980. 278 с. [Vydra, F., Štulik, K., and Yulakova, E., Stripping voltammetry (in Russian), Moscow: Мir, 1980. 278 p.]
  27. Yang, M. and Hu, Z., Electrodeposition of bismuth onto glassy carbon electrodes from nitrate solutions, J. Electroanal. Chem., 2005, vol. 583, p. 46.
  28. Goldstein, J.I., Newbury, D.E., Michael, J.R., Ritchie, N.W.M., Scott, J.H.J., and Joy, D.C., Scanning electron microscopy and X-ray microanalysis, New York: Springer New York, 2018. 550 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Types of voltammetryograms as a function of the duration of the electroconcentration stage, s: 60 (a), 150 (b), 300 (c)

Baixar (114KB)
3. Fig. 2. Voltammetryograms obtained during the study of calibration solutions of different concentrations (a). Graduation dependences for bismuth concentration 2.5-9 μM and lead concentration 7-25 μM (b). The error of peak area determination does not exceed 3%. In the captions to the dependences: S - area under the peak of anodic dissolution of metal, normalised by the rate of potential sweep, C - metal concentration

Baixar (153KB)
4. Fig. 3. Cyclic voltammetry obtained for Au/Si electrode in an electrolyte containing, mM: 18.4 Pb(NO3)2, 0.8 Bi(NO3)3, 24.6 EDTA-Na2 and 625 NaNO3. The potential sweep speed is 50 mV/s

Baixar (83KB)
5. Fig. 4. Mole fraction of bismuth in the electrolytic precipitate as a function of the mole fraction of bismuth in the total lead and bismuth content in the electrolyte, determined by PCMA and IVA methods. The results of approximation according to equation (2) are presented by the dotted line

Baixar (94KB)
6. Fig. 5. Phase diagram for Pb-Bi alloys (reproduced from [7]) and experimental points corresponding to the composition of precipitates obtained during this work. The composition of precipitates was determined by inversion voltammetry

Baixar (88KB)
7. Fig. 6. Scanning electron microscopy images for samples containing Bi, at. %: 77 (a), 33 (b) and 22 (c)

Baixar (344KB)
8. Fig. 7. SEM image of the surface of the precipitate containing 27 at. % Bi, formed from the electrolyte composition, mM: 18.4 Pb(NO3)2, 0.8 Bi(NO3)3, 24.6 EDTA-Na2 and 625 NaNO3, on a copper substrate at a deposition potential of -1.0 V (a); and its X-ray image (b)

Baixar (338KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024