Deposition of Iron Doped Birnessite During Simultaneous Electroreduction of Permanganate and Ferrate(Vi) In Sodium Hydroxide Solution
- Authors: Pugolovkin L.V.1, Levin E.E.1,2
-
Affiliations:
- Lomonosov Moscow State University
- Crystallography and Photonics Federal Research Center of the Russian Academy of Sciences
- Issue: Vol 60, No 8 (2024)
- Pages: 539-552
- Section: Articles
- URL: https://medjrf.com/0424-8570/article/view/671261
- DOI: https://doi.org/10.31857/S0424857024080022
- EDN: https://elibrary.ru/PPDDYP
- ID: 671261
Cite item
Abstract
The reduction of permanganate on rotating disk electrode is accompanied by inhibition of precipitating birnessite. Addition of potassium ferrate(VI) leads to an increase of inhibition. The obtaining of electrode material based on Fe-doped birnessite under alkaline conditions is demonstrated in experiment with deposition at inhibition potentials. This birnessite is single-phase and highly disordered. Fe content varies from 0 to 10 mol. % in respect to Mn with increasing ferrate(VI) content in deposition solution. Recharging potentials of birnessite are shifted which is manifested by cyclic voltammetry. Doping allows to increase the rate of oxygen evolution reaction. Specific currents are increased with the iron content in birnessite. The Tafel slope is 53 mV/dec and decreased by 2.5 times for birnessite containing 10 mol. % Fe.
Full Text

About the authors
L. V. Pugolovkin
Lomonosov Moscow State University
Author for correspondence.
Email: leoff@elch.chem.msu.ru
Russian Federation, Moscow
E. E. Levin
Lomonosov Moscow State University; Crystallography and Photonics Federal Research Center of the Russian Academy of Sciences
Email: leoff@elch.chem.msu.ru
Russian Federation, Moscow; Moscow
References
- Zhu, S., Huo, W., Liu, X., and Zhang, Y., Birnessite based nanostructures for supercapacitors: challenges, strategies and prospects, Nanoscale Adv., 2020, vol. 2, p. 37. doi: 10.1039/C9NA00547A
- Elmacı, G., Özgenç, G., Kurz, P., and Zumreoglu-Karan, B., Enhanced water oxidation performances of birnessite and magnetic birnessite nanocomposites by transition metal ion doping, Sustainable Energy & Fuels, 2020, vol. 4, p. 3157. doi: 10.1039/D0SE00301H
- Fang, X., Liu, Y., Cen, W., and Cheng, Y., Birnessite as a highly efficient catalyst for low-temperature NH3-SCR: the vital role of surface oxygen vacancies, Industrial & Engineering Chem. Res., 2020, vol. 59, p. 14606. doi: 10.1021/acs.iecr.0c00188
- Gusain, R., Gupta, K., Joshi, P., and Khatri, O.P., Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review, Advances in colloid and interface science, 2019, vol. 272, p. 102009. doi: 10.1016/j.cis.2019.102009
- Fang, Q., Ye, S., Yang, H., Yang, K., Zhou, J., Gao, Y., Lin Q, Tan, X., and Yang, Z., Application of layered double hydroxide-biochar composites in wastewater treatment: Recent trends, modification strategies, and outlook, J. Hazardous Mater., 2021, vol. 420, p. 126569. doi: 10.1016/j.jhazmat.2021.126569
- Yusuf, A., Sun, Y., Ren, Y., Snape, C., Wang, C., Jia, H., and He, J., Opposite Effects of Co and Cu Dopants on the Catalytic Activities of Birnessite MnO2 Catalyst for Low-Temperature Formaldehyde Oxidation, J. Phys. Chem. C, 2020, vol. 124, p. 26320. doi: 10.1021/acs.jpcc.0c08508
- Mang, C., Li, G., Rao, M., Zhang, X., Luo, J., and Jiang, T., Transition metal ions-modified birnessite toward highly efficiency photocatalytic formaldehyde oxidation under visible light irradiation, Environmental Sci. and Pollution Res., 2022, vol. 29, p. 49739. doi: 10.1007/s11356-022-19425-2
- Junming, C., You, L., Guiling, W., Jiahao, G., and Xuchun, W., Nickel-Doped Ultrathin K-Birnessite Manganese Oxide Nanosheet As Pseudocapacitor Electrode with Excellent Cycling Stability for High-Power Pesudocapacitors, ACS Sustainable Chem. Eng., 2017, vol. 5, p. 1594. doi: 10.1021/acssuschemeng.6b02363
- Zhao, Y., Fang, Q., Zhu, X., Xue, L., Ni, M., Qiu, C., Huang, H., Sun, S., Li, S., and Xia, H., Structure reinforced birnessite with an extended potential window for supercapacitors, J. Mater. Chem. A, 2020, vol. 8, p. 8969. doi: 10.1039/D0TA01480J
- Peng, H., Fan, H., Zhang, M., and Ning, L., Molybdenum-doped hexagonal birnessite as a promising electrode material of the electrochemical capacitor, Appl. Phys. A, 2018, vol. 124, p. 1. doi: 10.1007/s00339-018-1896-7
- Liu, H., Gu, W., Luo, B., Fan, P., Liao, L., Tian, E., Niu, Y., Fu, J., Wang, Z., Wu, Y., Lv, G., and Mei, L., Influence of Fe doping on the crystal structure, electronic structure and supercapacitance performance of birnessite [(Na,K)x(Mn4+, Mn3+)2O4·1.5H2O] with high areal mass loading, Electrochim. Acta, 2018, vol. 291, p. 31. doi: 10.1016/j.electacta.2018.08.145
- Dang, T.D., Le, T.T.H., Hoang, T.B.T., and Mai, T.T., Synthesis of nanostructured manganese oxides-based materials and application for supercapacitor, Advances in Natural Sci.: Nanosci. and Nanotechnol., 2015, vol. 6, p. 025011. doi: 10.1088/2043-6262/6/2/025011
- Yin, H., Kwon, K.D., Lee, J.Y., Shen, Y., Zhao, H., Wang, X., Liu, F., Zhang, J., and Feng, X., Distinct effects of Al3+ doping on the structure and properties of hexagonal turbostratic birnessite: A comparison with Fe3+ doping, Geochim. et Cosmochim. Acta, 2017, vol. 208, p. 268. doi: 10.1016/j.gca.2017.03.040
- Gu, W., Lv, G., Liao, L., Yang, C., Liu, H., Nebendahl, I., and Li, Z., Fabrication of Fe-doped birnessite with tunable electron spin magnetic moments for the degradation of tetracycline under microwave irradiation, J. Hazardous Mater., 2017, vol. 338, p. 428. doi: 10.1016/j.jhazmat.2017.05.044
- Pugolovkin, L.V., Levin, E.E., Arkharova, N.A., Orekhov, A.S., Presnov, D.E., and Tsirlina, G. A., Cathodic deposition of birnessite from alkaline permanganate solutions: Tools to control the current efficiency, morphology and adhesion, J. Electroanal. Chem., 2020, vol. 874, p. 114521. doi: 10.1016/j.jelechem.2020.114521
- Pugolovkin, L.V., Levin, E.E., Cherstiouk, O.V., Rudina, N.A., and Tsirlina, G.A., Fabrication and operation under the same conditions: oxygen reduction on electrodeposited manganese oxide, ECS Transactions, 2018, vol. 85, p. 137. doi: 10.1149/08512.0137ecst
- Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions, Houston: National Association of Corrosion Engineers, 1974. 644 p.
- Zhao, L., Chen, B.S., Zhang, J.L., and Wang, D.L., EQCM studies of composition and electrochemical performance of film prepared by electrochemical reduction of sodium ferrate, J. Solid State Electrochem., 2012, vol. 16, p. 2079. doi: 10.1007/s10008-011-1618-y
- Панкратов, Д.А., Макунин, А.В., Малин, А.Г. Композиция для синтеза кислородных соединений железа со степенями окисления (+4), (+5) и (+6), способ ее получения и способ ее применения, Пат. 2600346 (Россия). 2016. [Pankratov, D.A., Makunin, A.V., and Malin, A.G., Composition for the synthesis of oxygen iron compounds with oxidation steps (+4), (+5) and (+6), method of their preparation and method of their use, Patent 2600346 (Russia), 2016.]
- Carrington, A., Schonland, D., and Symons, M. C. R., 132. Structure and reactivity of the oxyanions of transition metals. Part IV. Some relations between electronic spectra and structure, J. Chem. Soc. (Resumed), 1957, p. 659. doi: 10.1039/JR9570000659
- Шарло, Г. Методы аналитической химии. Количественный анализ неорганических соединений. М.: Химия, 1965 г., 976 с.
- Sekula-Brzezińska, K., Wrona, P.K., and Galus, Z., Rate of the MnO4−/MnO42− and MnO42−/MnO43− electrode reactions in alkaline solutions at solid electrodes, Electrochim. Acta, 1979, vol. 24, p. 555. doi: 10.1016/0013-4686(79)85032-X
- Wang, Y.L., Ye, S.H., Bo, J.K., Wang, Y.Y., and Wu, F., Electrochemical reduction mechanism of Fe (VI) at a porous Pt black electrode, J. Electrochem. Soc., 2009, vol. 156, p. A572. doi: 10.1149/1.3129243
- Christian, G.D., Sensmeier, R.K., and Wagner, W.F., Electrochemical studies of potassium ferrate (VI), Monatshefte für Chemie/Chem. Monthly, 1975, vol. 106, p. 813. doi: 10.1007/BF00902186
- Wulfsberg, G., Inorganic Chemistry, CA; Sausalito, 2000. 289 p.
- Волков, А.И., Жарский, И.М. Большой химический справочник, М.: Советская школа, 2005. 608 с. [Volkov, A.I. and Jarsky, I.M., Large chemical handbook (in Russian), Moskow: Soviet scool, 2005. 608 p.
- Giovanoli, R., Vernadite is random-stacked birnessite, Mineral. Deposita, 1980, vol. 15, p. 251. doi: 10.1007/BF00206520
- Giovanoli, R., Stahli, E., and Feitknecht, W., Über oxidhydroxide des vierwertigen mangans mit schichtengitter. 1. Mitteilung. natriummangan (II, III) manganat (IV), Helv. Chim. Acta, 1970, vol. 53, p. 453. doi: 10.1002/hlca.19700530302
- Manceau, A., Marcus, M. A., Grangeon, S., Lanson, M., Lanson, B., Gaillot, A. C., Skanthakumar, S., and Soderholm, L., Short-range and long-range order of phyllomanganate nanoparticles determined using high-energy X-ray scattering, J. Appl. Crystallogr., 2013, vol. 46, p. 193. doi: 10.1107/S0021889812047917
- Lopano, C.L., Heaney, P.J., Post, J.E., Hanson, J., and Komarneni, S., Time-resolved structural analysis of K-and Ba-exchange reactions with synthetic Na-birnessite using synchrotron X-ray diffraction, Amer. Mineral., 2007, vol. 92, p. 380. doi: 10.2138/am.2007.2242
- Larramona, G. and Gutiérrez, C., The Passive Film on Iron at pH 1–14: A Potential‐Modulated Reflectance Study, J. Electrochem. Soc., 1989, vol. 136, p. 2171. doi: 10.1149/1.2097242
- Scheitenberger, P., Brimaud, S., and Lindén, M., XRD/Raman spectroscopy studies of the mechanism of (de) intercalation of Na+ from/into highly crystalline birnessite, Mater. Advances, 2021, vol. 2, p. 3940. doi: 10.1039/D1MA00161B
- Zhang, Y., Fu, J., Cui, P., Cheng, S., Cui, X., Qin, T., Zhou, J., Zhang, Z., Su, Q., and Xie, E., Low-crystalline birnessite-MnO2 nanograins for high-performance supercapacitors, Electrochim. Acta, 2021, vol. 389, p. 138761. doi: 10.1016/j.electacta.2021.138761
- Julien, C., Massot, M., Baddour-Hadjean, R., Franger, S., Bach, S., and Pereira-Ramos, J. P., Raman spectra of birnessite manganese dioxides, Solid State Ionics, 2003, vol. 159, p. 345. doi: 10.1016/S0167-2738(03)00035-3
- Liu, S., Huang, H., Yang, C., Liu, Y., Li, H., Xia, H., Qin, T., Zhou, J., and Liu, X., Electrochemical activation enabling structure reconstruction of Fe-doped MnO2 for enhancing pseudocapacitive storage. Chem. Engineering Journal, 2022, vol. 441, p. 135967. doi: 10.1016/j.cej.2022.135967
- Pugolovkin, L.V. and Tsirlina, G.A., Birnessite for supercapacitors: alkaline versus neutral electrolytes, J. Appl. Electrochem., 2023, vol. 53, p. 909. doi: 10.1007/s10800-022-01823-6
- Ju, M., Chen, Z., Zhu, H., Cai, R., Lin, Z., Chen, Y., Wang, Y., Gao, J., Long, X., and Yang, S., Fe (III) Docking-Activated Sites in Layered Birnessite for Efficient Water Oxidation, J. Amer. Chem. Soc., 2023, vol. 145, p. 11215. doi: 10.1021/jacs.3c01181
- Wang, J.G., Kang, F., and Wei, B., Engineering of MnO2-based nanocomposites for high-performance supercapacitors, Progress in Mater. Sci., 2015, vol. 74, p. 51. doi: 10.1016/j.pmatsci.2015.04.003
- Yang, Y., Su, X., Zhang, L., Kerns, P., Achola, L., Hayes, V., Quardokus, R., Suib, S., and He, J., Intercalating MnO2 nanosheets with transition metal cations to enhance oxygen evolution, ChemCatChem, 2019, vol. 11, p. 1689. doi: 10.1002/cctc.201802019
- Zhao, Y., Zhang, J., Wu, W., Guo, X., Xiong, P., Liu, H., and Wang, G., Cobalt-doped MnO2 ultrathin nanosheets with abundant oxygen vacancies supported on functionalized carbon nanofibers for efficient oxygen evolution, 2018, Nano Energy, vol. 54, p. 129. doi: 10.1016/j.nanoen.2018.10.008
- Teng, Y., Wang, X.D., Liao, J.F., Li, W.G., Chen, H.Y., Dong, Y.J., and Kuang, D.B., Atomically thin defect‐rich Fe–Mn–O hybrid nanosheets as high efficient electrocatalyst for water oxidation, Advanced Functional Mater., 2018, vol. 28, p. 1802463. doi: 10.1002/adfm.201802463
Supplementary files
