Rhodococcus erythropolis A-27 as a Biocatalyst for Enantioselective Reduction of Ketones in the Presence of High Concentrations of Isopropanol

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It has been shown that in the presence of the cells of five strains of Rhodococcus erythropolis, isolated from various anthropogenically polluted ecosystems, and an exogenous reducing agent (isopropanol), enantioselective reduction of ketones (acetophenone and 6-methyl-5-hepten-2-one) occurs with the formation of the corresponding S-configuration alcohols with high enantiomeric excess. Using the most active strain of R. erythropolis A-27 at the optimal concentration of isopropanol, products (S-1-phenylethanol and S-6-methyl-5-hepten-2-ol) were obtained with an enantiomeric excess of at least 99.9 % and a yield of 92 and 93% respectively. This strain was found to be tolerant to isopropanol and could effectively reduce 6-methyl-5-hepten-2-one to S-6-methyl-5-hepten-2-ol in a buffer containing 50% isopropanol.

Full Text

Restricted Access

About the authors

N. I. Petukhova

Ufa State Petroleum Technological University

Author for correspondence.
Email: biocatNP@yandex.ru
Russian Federation, Ufa, 450062

A. V. Mityagina

Ufa State Petroleum Technological University

Email: a_mityagina@mail.ru
Russian Federation, Ufa, 450062

V. V. Zorin

Ufa State Petroleum Technological University

Email: biocatNP@yandex.ru
Russian Federation, Ufa, 450062

References

  1. Goldberg K., Schroer K., Lütz S., Liese A. // Appl. Microbiol. Biotechnol. 2007. V. 76. P. 249–255.
  2. Patel R.N. // Coord. Chem. Rev. 2008. V. 252. P. 659−701.
  3. Musa M.M., Phillips R.S. // Catal. Sci. Technol. 2011. V. 1. P. 1311–1323.
  4. Milner S.E., Maguire A.R. // ARKIVOC. 2012. P. 321–382. http://dx.doi.org/10.3998/ark.5550190.0013.109
  5. Kratzer R., Woodley J.M., Nidetzky B. // Biotechnology Advances. 2015. V. 33. P. 1641–1652.
  6. de Carvalho C.C.C.R. // Microb. Biotechnol. 2017. V. 10. № 2. P. 250−263.
  7. Hollmann F., Opperman D.J., Paul C.E. // Angew. Chem. Int. Ed. 2021. V. 60. P. 5644–5665.
  8. Simić S., Zukić E., Schmermund L., Faber K., Winkler Ch.K., Kroutil W. // Chem. Rev. 2022. V. 122. P. 1052−1126.
  9. Aranda C., de Gonzalo G. // Molecules. 2020. V. 25(13). Article 3016. https://doi.org/10.3390/molecules25133016
  10. Sorgedrager M.J., van Rantwijk F., Huisman G.W., Sheldon R.A. // Adv. Synth. Catal. 2008. V. 350. P. 2322–2328.
  11. Jia Q., Zheng Yu.-C., Li H.-P., Qian X.-L., Zhang Zhi.-J., Xu J.-H. // Appl. Environ. Microbiol. 2022. V. 88. № 9. P. 1–16.
  12. Itoh N., Isotani K., Nakamura M., Inoue K., Isogai Y., Makino Y. // Appl. Microbiol. Biotechnol. 2012. № 93. P. 1075–1085.
  13. Шакиров А.Н., Петухова Н.И., Зорин В.В. // Башкирский химический журнал. 2013. Т. 20. № 4. С. 59–63.
  14. Коршунова И.О., Писцова О.Н., Куюкина М.С., Ившина И.Б. // Прикл. биохимия и микробиология. 2016. Т. 52. № 1. С. 53–61.
  15. Yang Z., Fu H., Ye W., Xie Y., Liu Q., Wang H., Wei D. // Catal. Sci. Technol. 2020. № 10. Р. 70–78.
  16. Митягина А.В., Петухова Н.И., Прищепов Ф.А., Зорин В.В. // Башкирский химический журнал. 2021. Т. 28. № 3. С. 41–46.
  17. Митягина А.В., Рахманов Т.Р., Петухова Н.И., Зорин В.В. // Башкирский химический журнал. 2022. Т. 29. № 1. С. 29–36.
  18. Xu S., Lin Q., Chen W., Lin R., Shen Y., Tang P. et al. // Catalysts. 2023. V. 13(1). Article 52. https://doi.org/10.3390/catal13010052
  19. Kim D., Choi K.Y., Yoo M., Zylstra G.J., Kim E. // J. Microbiol. Biotechnol. 2018. V. 28. P. 1037–1051.
  20. Busch H., Hagedoorn P.-L., Hanefeld U. // Int. J. Mol. Sci. 2019. V. 20. Article 4787. https://doi.org/10.3390/ijms20194787
  21. Qin L., Wu L., Niе Y., Xu Y. // Catal. Sci. Technol. 2021. V. 11. P. 2637–2651.
  22. Ivshina I., Bazhutin G., Tyumina E. // Front. Microbiol. 2022. V. 13. Article 967127. https://doi.org/10.3389/fmicb.2022.967127
  23. Hibino A., Ohtake H. // Process Biochemistry. 2013. V. 48. P. 838–843.
  24. Honda K., Ono T., Okano K., Miyake R., Dekishima Y., Kawabata H. // J. Biosci. Bioeng. 2019. V. 127. № 2. P. 145–149.
  25. Kosjek B., Stampfer W., Pogorevc M., Goessler W., Faber K., Kroutil W. // Biotechnol. Bioeng. 2004. V. 86. P. 55–62.
  26. de Gonzalo G., Lavandera I., Faber K., Kroutil W. // Org. Lett. 2007. V. 9. № 11. P. 2163–2166.
  27. Yang C., Ying X., Yu M., Zhang Y., Xiong B., Song Q., Wang Z. // J. Industrial Microbiol. Biotechnol. 2012. V. 39. P. 1431–1443.
  28. Stankeviciute J., Kutanovas S., Rutkiene R., Tauraite D., Striela R., Meskys R. // Peer J. 2015. V. 3. Article e1387. https://doi.org/10.7717/peerj.1387
  29. Xu G.-Ch., Tang M.-H., Ye Ni // J. Mol. Catalysis B: Enzymatic. 2016. V. 123. P. 67–72.
  30. Hu J., Li G., Liang C., Shams S., Zhu S., Zheng G. // Process Biochemistry. 2020. V. 92. P. 232–243.
  31. Hummel W., Abokitse K., Drauz K., Rollmann C., Gröger H. // Adv. Synth. Catal. 2003. V. 345. P. 153–159.
  32. Stampfer W., Kosjek B., Moitzi C., Kroutil W., Faber K. // Angew. Chem. Int. Ed. Engl. 2002. V. 41. P. 1014–1017.
  33. Stampfer W., Kosjek B., Faber K., Kroutil W. // J. Org. Chem. 2003. V. 68. P. 402–406.
  34. Stampfer W., Kosjek B., Kroutil W., Faber K. // Biotechnol. Вioeng. 2003. V. 81. № 7. P. 865–869.
  35. Short Protocols in Molecular Biology. 3rd Ed. / Eds. F.M. Ausbel, R. Brent , R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, K. Struhl N.Y.: John Wiley & Sons, 1995. 450 p.
  36. Ишмуратов Г.Ю., Газетдинов Р.Р., Выдрина В.А., Харисов Р.Я., Яковлев М.П., Муслухов Р.Р. и др. // Вестник Башкирского университета. 2012. Т. 17. № 4. С. 1691–1699.
  37. Шакиров А.Н., Петухова Н.И., Зорин В.В. // Башкирский химический журнал. 2013. Т. 20. № 4. С. 59–63.
  38. Schroer K., Tacha E., Lutz S. // Org. Process Res. Dev. 2007. V. 11. № 5. P. 836–841.
  39. Calvin S.J., Mangan D., Miskelly I., Moody T.S., Stevenson P.J. // Org. Process Res. Dev. 2012. V. 16. P. 82–86.
  40. Чернявская М.И., Букляревич А.А., Делеган Я.А., Охремчук А.Э., Филонов А.Е., Титок М.А. // Микробиология. 2018. Т. 87. № 5. С. 581–594.
  41. Yang C., Ying X., Yu M., Zhang Y., Xiong B., Song Q., Wang Z. //J. Ind. Microbiol. Biotech. 2012. V. 39. Р. 1431–1443.
  42. Chen H., Qian F., Lin H., Chen W., Wang P. // Catalysts. 2020. V. 10. Article 30. https://doi.org/10.3390/catal10010030
  43. Costa L.F.A., Lemos F., Ramôa Ribeiro F., Cabral J.M.S. // Catalysis Today. 2008. V. 133. P. 625–631.
  44. Vieira G., de Freitas Araujo D., Lemos T., de Mattos M., de Oliveira M., Melo V. et al. // J. Braz. Chem. Soc. 2010. V. 21. № 8. Р. 1509–1516.
  45. Шейко Е.А., Медникова Е.Э., Воробьева Т.Е., Чанышева А.Р. // Башкирский химический журнал. 2018. Т. 25. № 1. С. 55–58.
  46. Mori K., Puapoomchareon P. // Liebigs Ann. Chem. 1989. P. 1261–1262.
  47. Flechtmann C.A.H., Berisford C.W. // J. Appl. Ent. 2003. V. 127. P. 189–194.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The position of the studied strains of the genus Rhodococcus on the phylogenetic tree based on a comparative analysis of the nucleotide sequences of 16S rRNA gene fragments using the “neighbor-joining" method. The scale corresponds to 5 nucleotide substitutions for every 1000 nucleotides. The figures show the statistical reliability of the branching order, determined using a "bootstrap" analysis of 1000 alternative trees.

Download (193KB)
3. 2. Dependence of the initial rate (g/l/h) of acetophenone (a) and 6-methyl-5-hepten-2-one (b) reduction on the concentration of isopropanol (%) in the presence of R. erythropolis strain cells: 1 — A-27; 2 —A18-19; 3 — A4-72; 4 — A7-1; 5 — A15-23.

Download (181KB)
4. Fig. 3. Dependence of the yield (a, P, %) and the enantiomeric excess of S-6-methyl-5-hepten-2-ol (b) on the initial concentration of isopropanol (%) during the reduction of 6-methyl-5-hepten-2-one using R. erythropolis strain cells: 1 — A-27; 2 — A18-19; 3 — A4-72; 4 — A7-1; 5 — A15-23.

Download (181KB)
5. Fig. 4. Dependence of the yield (a, P, %) and enantiomeric excess (b, e, %) of S-1-phenylethanol on the initial concentration of isopropanol (%) during the reduction of acetophenone using R. erythropolis strain cells: 1 — A-27; 2 — A18-19; 3 — A4-72; 4 — A7-1; 5 — A15-23.

Download (180KB)
6. 5. Dynamics of the yield of reaction products (P, %) during the reduction of acetophenone (a) and 6-methyl-5-hepten-2-one (b) using R. erythropolis strain cells at optimal initial concentrations of isopropanol: 1 — A-27; 2 — A18-19; 3 — A4-72; 4 — A7-1; 5 — A15-23.

Download (180KB)
7. 1

Download (14KB)
8. 2

Download (15KB)
9. 3

Download (14KB)
10. 4

Download (14KB)

Copyright (c) 2025 Russian Academy of Sciences