Interleukin-13 and cardiovascular diseases: literature review

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Cardiovascular diseases remain the leading cause of death worldwide despite significant advances in medicine and increased life expectancy. It is very important to search for and study new cardiovascular biological markers that can help the early diagnosis of cardiovascular diseases, serve as a laboratory tool for assessing the effectiveness of treatment, be a predictive marker of possible adverse clinical outcomes, and be a significant criterion for risk stratification. This review aims to consider interleukin-13 (IL-13) as a diagnostic and prognostic biomarker in cardiovascular pathology. IL-13 is involved in the development of many cardiovascular diseases, according to various in vitro and in vivo studies, but its role remains unclear until the end. IL-13 has a positive effect, promoting the development of the heart at an early stage and facilitating the recovery of the heart after a myocardial infarction. Due to the induction of fibrosis and adverse cardiac remodeling, long-term IL-13 synthesis appears to be a risk factor for adverse outcomes in chronic cardiovascular diseases, such as heart failure. Understanding the effect of IL-13 on cardiac metabolism will shed light on possible new pathogenetic mechanisms for the development of heart disease. As a rule, an increase in the level of IL-13 in the blood serum goes in parallel with its expression in the tissues of the heart. However, the dissociation of systemic inflammatory reactions and local expression is not excluded. The introduction of IL-13 can restore the regenerative capacity of cardiomyocytes and reduce cardiac dysfunction. IL-13 deficiency limits the proliferation of cardiomyocytes, induces compensatory hypertrophy of cardiomyocytes in vitro and deletion of IL-13, leads to cardiac dysplasia, and impairs recovery processes in vivo. Although IL-13 is associated with cardiac fibrosis, cardiomyocyte proliferation, myocardial hypertrophy, immune cell recruitment and differentiation, and chemokine secretion in the heart, it is precise signaling pathways and underlying mechanisms of action remain poorly understood.

Full Text

Restricted Access

About the authors

Amina Magomedovna Alieva

The Russian National Research Medical University named after N.I. Pirogov

Author for correspondence.
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579
SPIN-code: 2749-6427

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, Moscow

Elena Vladimirovna Reznik

The Russian National Research Medical University named after N.I. Pirogov

Email: elenaresnik@gmail.com
ORCID iD: 0000-0001-7479-418X
SPIN-code: 3494-9080

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

Natalia Vadimovna Teplova

The Russian National Research Medical University named after N.I. Pirogov

Email: teplova.nv@yandex.ru
ORCID iD: 0000-0002-7181-4680

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

Leyla Ramazanovna Sarakaeva

Almazov National Medical Research Centre

Email: sarale723@gmail.com
ORCID iD: 0000-0002-2752-861X

Graduate Student

Russian Federation, Saint-Petersburg

Elena Valerievna Surskaya

Central Clinical Hospital of the Russian Academy of Sciences

Email: esurskaya@mail.ru
ORCID iD: 0000-0002-6847-219X

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Dzhannet Anuarovna Elmurzaeva

Kabardino-Balkarian State University

Email: jannet.elmurzaeva@yandex.ru
ORCID iD: 0000-0002-5640-6638
SPIN-code: 7284-3749

MD, Cand. Sci. (Med.)

Russian Federation, Nalchik

Madina Yakubovna Shavaeva

Kabardino-Balkarian State University

Email: shavaeva.madina@icloud.com
ORCID iD: 0000-0001-5907-3026
Russian Federation, Nalchik

Alik Magomedovich Rakhaev

Kabardino-Balkarian State University

Email: alikrahaev@yandex.ru
ORCID iD: 0000-0001-9601-1174

MD, Dr. Sci. (Med.), Professor

Russian Federation, Nalchik

Irina Aleksandrovna Kotikova

The Russian National Research Medical University named after N.I. Pirogov

Email: kotikova.ia@mail.ru
ORCID iD: 0000-0001-5352-8499

Student

Russian Federation, Moscow

Igor Gennadievich Nikitin

The Russian National Research Medical University named after N.I. Pirogov

Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

References

  1. Roth GA, Johnson C, Abajobir A, et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25. doi: 10.1016/j.jacc.2017.04.052
  2. Almazroi AA. Survival prediction among heart patients using machine learning techniques. Math Biosci Eng. 2022;19(1):134–145. doi: 10.3934/mbe.2022007
  3. Shapoval IN, Nikitina SYu. Zdravookhranenie v Rossii 2019. Stat. sb. Moscow: Rosstat; 2019. Available at: https://rosstat.gov.ru/storage/mediabank/Zdravoohran-2019.pdf. Accessed: 26.08.2022. (In Russ).
  4. Alieva AM, Baykova IE, Kislyakov VA, et al. Galactin-3: diagnostic and prognostic value in patients with chronic heart failure. Terapevticheskii Arkhiv (Ter. Arkh.). 2019;(91):145–149. (In Russ). doi: 10.26442/00403660.2019.09.000226
  5. Alieva AM, Pinchuk TV, Almazova II, et al. Dinical value of blood biomarker ST2 in patients with chronic heart failure. Consilium Medicum. 2021;23(6):522–526. (In Russ). doi: 10.26442/20751753.2021.6.200606
  6. Alieva AM, Almazova II, Pinchuk TV, et al. Fractalkin and cardiovascular diseas. Consilium Medicum. 2020;22(5):83–86. (In Russ). doi: 10.26442/20751753.2020.5.200186
  7. Goswami SK, Ranjan P, Dutta RK, Verma SK. Management of inflammation in cardiovascular diseases. Pharmacol Res. 2021;173:105912. doi: 10.1016/j.phrs.2021.105912
  8. Schiattarella GG, Sequeira V, Ameri P. Distinctive patterns of inflammation across the heart failure syndrome. Heart Fail Rev. 2021;26(6):1333–1344. doi: 10.1007/s10741-020-09949-5
  9. Alieva AM, Teplova NV, Batov MA, et al. Pentraxin-3, a promising biological marker in heart failure: literature review. Consilium Medicum. 2022;24(1):53–59. (In Russ). doi: 10.26442/20751753.2022.1.201382
  10. Adamo L, Rocha-Resende C, Prabhu SD, Mann DL. Reappraising the role of inflammation in heart failure. Nat Rev Cardiol. 2020;17(5):269–285. doi: 10.1038/s41569-019-0315-x
  11. Qian N, Gao Y, Wang J, Wang Y. Emerging role of interleukin-13 in cardiovascular diseases: A ray of hope. J Cell Mol Med. 2021;25(12):5351–5357. doi: 10.1111/jcmm.16566
  12. Pelaia C, Heffler E, Crimi C, et al. Interleukins 4 and 13 in Asthma: Key Pathophysiologic Cytokines and Druggable Molecular Targets. Front Pharmacol. 2022;13:851940. doi: 10.3389/fphar.2022.851940
  13. Knudson KM, Hwang S, McCann MS, et al. Recent Advances in IL-13Rα2-Directed Cancer Immunotherapy. Front Immunol. 2022; 13:878365. doi: 10.3389/fimmu.2022.878365
  14. Ntontsi P, Papathanassiou E, Loukides S, et al. Targeted anti-IL-13 therapies in asthma: current data and future perspectives. Expert Opin Investig Drugs. 2018;27(2):179–186. doi: 10.1080/13543784.2018.1427729
  15. Nussbaum JC, Van Dyken SJ, von Moltke J, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013;502(7470):245–248. doi: 10.1038/nature12526
  16. Vivier E, Artis D, Colonna M, et al. Innate Lymphoid Cells: 10 Years On. Cell. 2018;174(5):1054–1066. doi: 10.1016/j.cell.2018.07.017
  17. Krabbendam L, Bal SM, Spits H, Golebski K. New insights into the function, development, and plasticity of type 2 innate lymphoid cells. Immunol Rev. 2018;286(1):74–85. doi: 10.1111/imr.12708
  18. Deng Y, Wu S, Yang Y, et al. Unique Phenotypes of Heart Resident Type 2 Innate Lymphoid Cells. Front Immunol. 2020;11:802. doi: 10.3389/fimmu.2020.00802
  19. Iwaszko M, Biały S, Bogunia-Kubik K. Significance of Interleukin (IL)-4 and IL-13 in Inflammatory Arthritis. Cells. 2021;10(11):3000. doi: 10.3390/cells10113000
  20. Shi J, Song X, Traub B, et al. Involvement of IL-4, IL-13 and Their Receptors in Pancreatic Cancer. Int J Mol Sci. 2021;22(6):2998. doi: 10.3390/ijms22062998
  21. Chen FM, Tse JK, Jin L, et al. Type 2 innate immunity drives distinct neonatal immune profile conducive for heart regeneration. Theranostics. 2022;12(3):1161–1172. doi: 10.7150/thno.67515
  22. Mineev VN, Sorokina LN, Trofimov VI, et al. Interleukin 4 and interleukin 13 receptors: structure, function and genetic polymorphism. Pulmonology. 2010;(3):113–119. (In Russ). doi: 10.18093/0869-0189-2010-3-113-119
  23. Junttila IS. Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes. Front Immunol. 2018;9:888. doi: 10.3389/fimmu.2018.00888
  24. Biros E, Reznik JE, Moran CS. Role of inflammatory cytokines in genesis and treatment of atherosclerosis. Trends Cardiovasc Med. 2022;32(3):138–142. doi: 10.1016/j.tcm.2021.02.001
  25. Kassem KM, Ali M, Rhaleb NE. Interleukin 4: Its Role in Hypertension, Atherosclerosis, Valvular, and Nonvalvular Cardiovascular Diseases. Cardiovasc Pharmacol Ther. 2020;25(1):7–14. doi: 10.1177/1074248419868699
  26. Bobryshev YV, Ivanova EA, Chistiakov DA, et al. Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis. Biomed Res Int. 2016;2016:9582430. doi: 10.1155/2016/9582430
  27. Zhao XN, Li YN, Wang YT. Interleukin-4 regulates macrophage polarization via the MAPK signaling pathway to protect against atherosclerosis. Genet Mol Res. 2016;15(1). doi: 10.4238/gmr.15017348
  28. Dutova SV, Saranchina JV, Karpova MR, et al. Cytokines and atherosclerosis, new research directions. Bulletin of Siberian Medicine. 2018;17(4):199–208. (In Russ). doi: 10.20538/1682-0363-2018-4-199-207
  29. Cardilo-Reis L, Gruber S, Schreier SM. Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol Med. 2012;4(10):1072–1086. doi: 10.1002/emmm.201201374
  30. Boccardi V, Paolacci L, Croce MF, et al. Lower serum levels of IL-13 is associated with increased carotid intima-media thickness in old age subjects. Aging Clin Exp Res. 2020;32(7):1289–1294. doi: 10.1007/s40520-019-01313-4
  31. Raaz-Schrauder D, Klinghammer L, Baum C, et al. Association of systemic inflammation markers with the presence and extent of coronary artery calcification. Cytokine. 2012;57(2):251–257. doi: 10.1016/j.cyto.2011.11.015
  32. Zha LF, Nie SF, Chen QW, et al. IL-13 may be involved in the development of CAD via different mechanisms under different conditions in a Chinese Han population. Sci Rep. 2018;8(1):6182. doi: 10.1038/s41598-018-24592-9
  33. Boles U, Johansson A, Wiklund U, et al. Cytokine Disturbances in Coronary Artery Ectasia Do Not Support Atherosclerosis Pathogenesis. Int J Mol Sci. 2018;19(1):260. doi: 10.3390/ijms19010260
  34. Hofmann U, Knorr S, Vogel B, et al. Interleukin-13 deficiency aggravates healing and remodeling in male mice after experimental myocardial infarction. Circ Heart Fail. 2014;7(5):822–830. doi: 10.1161/circheartfailure.113.001020
  35. Yuan D, Tie J, Xu Z, et al. Dynamic Profile of CD4+ T-Cell-Associated Cytokines, Chemokines following Murine Myocardial Infarction, Reperfusion. Mediators Inflamm. 2019;2019:9483647. doi: 10.1155/2019/9483647
  36. Jafarzadeh A, Esmaeeli-Nadimi A, Nough H, et al. Serum levels of interleukin (IL)-13, IL-17 and IL-18 in patients with ischemic heart disease. Anadolu Kardiyol Derg. 2009;9(2):75–83.
  37. Parisi V, Cabaro S, D’Esposito V, et al. Epicardial Adipose Tissue and IL-13 Response to Myocardial Injury Drives Left Ventricular Remodeling After ST Elevation Myocardial Infarction. Front Physiol. 2020;11:575181. doi: 10.3389/fphys.2020.575181
  38. Wang J, Liu M, Wu Q, et al. Human Embryonic Stem Cell-Derived Cardiovascular Progenitors Repair Infarcted Hearts Through Modulation of Macrophages via Activation of Signal Transducer and Activator of Transcription 6. Antioxid Redox Signal. 2019;31(5):369–386. doi: 10.1089/ars.2018.7688
  39. Korotaeva AA, Samoilova EV, Mindzaev DR, et al. Pro-inflammatory cytokines in chronic cardiac failure: state of problem. Terapevticheskii Arkhiv (Ter. Arkh.). 2021;93(11):1389–1394. (In Russ). doi: 10.26442/00403660.2021.11.201170
  40. Cieslik KA, Taffet GE, Carlson S, et al. Immune-inflammatory dysregulation modulates the incidence of progressive fibrosis and diastolic stiffness in the aging heart. J Mol Cell Cardiol. 2011;50(1):248–256. doi: 10.1016/j.yjmcc.2010.10.019
  41. Yuan L, Chen X, Cheng L, et al. HDAC11 regulates interleukin-13 expression in CD4+ T cells in the heart. J Mol Cell Cardiol. 2018;122:1–10. doi: 10.1016/j.yjmcc.2018.07.253
  42. Amit U, Kain D, Wagner A, et al. New Role for Interleukin-13 Receptor α1 in Myocardial Homeostasis and Heart Failure. J Am Heart Assoc. 2017;6(5):e005108. doi: 10.1161/JAHA.116.005108
  43. Nishimura Y, Inoue T, Nitto T, et al. Increased interleukin-13 levels in patients with chronic heart failure. Int J Cardiol. 2009;131(3):421–423. doi: 10.1016/j.ijcard.2007.07.128
  44. Amir O, Spivak I, Lavi I, Rahat MA. Changes in the monocytic subsets CD14(dim)CD16(+) and CD14(++) CD16(-) in chronic systolic heart failure patients. Mediators Inflamm. 2012;2012:616384. doi: 10.1155/2012/616384
  45. Qiu X, Ma F, Zhang H. Circulating Levels of IL-13, TGF-β1, and Periostin as Potential Biomarker for Coronary Artery Disease with Acute Heart Failure. Evid Based Complement Alternat Med. 2021;2021:1690421. doi: 10.1155/2021/1690421
  46. Ohtsuka T, Inoue K, Hara Y, et al. Serum markers of angiogenesis and myocardial ultrasonic tissue characterization in patients with dilated cardiomyopathy. Eur J Heart Fail. 2005;7(4):689–695. doi: 10.1016/j.ejheart.2004.09.011
  47. Diakos NA, Taleb I, Kyriakopoulos CP, et al. Circulating and Myocardial Cytokines Predict Cardiac Structural and Functional Improvement in Patients with Heart Failure Undergoing Mechanical Circulatory Support. J Am Heart Assoc. 2021;10(20):e020238. doi: 10.1161/JAHA.120.020238
  48. Shipulin VM, Chumakova SP, Pogonchenkova DA, et al. Interleukin-10 and non-classical monocytes as biomarkers of ischemic cardiomyopathy. Patologiya krovoobrashcheniya i kardiokhirurgiya. 2020;24(1):45–53. (In Russ). doi: 10.21688/1681-3472-2020-1-45-53
  49. Bruestle K, Hackner K, Kreye G, Heidecker B. Autoimmunity in Acute Myocarditis: How Immunopathogenesis Steers New Directions for Diagnosis and Treatment. Curr Cardiol Rep. 2020;22(5):28. doi: 10.1007/s11886-020-01278-1
  50. Cihakova D, Barin JG, Afanasyeva M, et al. Interleukin-13 protects against experimental autoimmune myocarditis by regulating macrophage differentiation. Am J Pathol. 2008;172(5):1195–1208. doi: 10.2353/ajpath.2008.070207
  51. Kolivand S, Amini P, Saffar H, et al. Selenium-L-methionine modulates radiation injury and Duox1 and Duox2 upregulation in rat’s heart tissues. J Cardiovasc Thorac Res. 2019;11(2):121–126. doi: 10.15171/jcvtr.2019.21
  52. Yang H, Chen Y, Gao C. Interleukin-13 reduces cardiac injury and prevents heart dysfunction in viral myocarditis via enhanced M2 macrophage polarization. Oncotarget. 2017;8(59):99495–99503. doi: 10.18632/oncotarget.20111
  53. Zhang Y, Zhang M, Li X, et al. Silencing MicroRNA-155 Attenuates Cardiac Injury and Dysfunction in Viral Myocarditis via Promotion of M2 Phenotype Polarization of Macrophages. Sci Rep. 2016;6:22613. doi: 10.1038/srep22613
  54. Rotter Sopasakis V, Sandstedt J, Johansson M, et al. Toll-like receptor-mediated inflammation markers are strongly induced in heart tissue in patients with cardiac disease under both ischemic and non-ischemic conditions. Int J Cardiol. 2019;293:238–247. doi: 10.1016/j.ijcard.2019.06.033
  55. Vianello E, Marrocco-Trischitta Massimiliano M, Dozio E, et al. Correlational study on altered epicardial adipose tissue as a stratification risk factor for valve disease progression through IL-13 signaling. J Mol Cell Cardiol. 2019;132:210–218. doi: 10.1016/j.yjmcc.2019.05.012
  56. Liu Q, Qiao WH, Li FF, et al. The Role of Interleukin-13 in Patients with Rheumatic Valvular Fibrosis: A Clinical and Histological Study. J Heart Valve Dis. 2015;24(4):496–501.
  57. Zlatanova I, Pinto C, Bonnin P, et al. Iron Regulator Hepcidin Impairs Macrophage-Dependent Cardiac Repair After Injury. Circulation. 2019;139(12):1530–1547. doi: 10.1161/circulationaha.118.034545
  58. Malek Mohammadi M, Kattih B, Grund A, et al. The transcription factor GATA4 promotes myocardial regeneration in neonatal mice. EMBO Mol Med. 2017;9(2):265–279. doi: 10.15252/emmm.201606602
  59. Wodsedalek DJ, Paddock SJ, Wan TC, et al. IL-13 promotes in vivo neonatal cardiomyocyte cell cycle activity and heart regeneration. Am J Physiol Heart Circ Physiol. 2019;316(1):H24–H34. doi: 10.1152/ajpheart.00521.2018
  60. Knudsen NH, Stanya KJ, Hyde AL, et al. Interleukin-13 drives metabolic conditioning of muscle to endurance exercise. Science. 2020;368(6490):eaat3987. doi: 10.1126/science.aat3987
  61. Li AW, Lim WA. Engineering cytokines and cytokine circuits. Science. 2020;370(6520):1034–1035. doi: 10.1126/science.abb5607
  62. O’Meara CC, Wamstad JA, Gladstone RA, et al. Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration. Circ Res. 2015;116(5):804–815. doi: 10.1161/circresaha.116.304269
  63. Aliyeva AM, Almazova II, Pinchuk TV, et al. The value of copeptin in the diagnosis and prognosis of cardiovascular diseases. Clinical Medicine (Russian Journal). 2020;98(3):203–209. (In Russ). doi: 10.30629/0023-2149-2020-98-3-203-209
  64. Aliyeva AM, Reznik EV, Hasanova ET, et al. Clinical value of blood biomarkers in patients with chronic heart failure. The Russian Archives of Internal Medicine. 2018;8(5):333–345. (In Russ). doi: 10.20514/2226-6704-2018-8-5-333-345
  65. Ky B, French B, Levy WC, et al. Multiple biomarkers for risk prediction in chronic heart failure. Circ Heart Fail. 2012;5(2):183–190. doi: 10.1161/circheartfailure.111.965020
  66. Bayes-Genis A, Richards AM, Maisel AS, et al. Multimarker testing with ST2 in chronic heart failure. Am J Cardiol. 2015;115(7):76B–80B. doi: 10.1016/j.amjcard.2015.01.045
  67. Lupón J, de Antonio M, Galán A, et al. Combined use of the novel biomarkers high-sensitivity troponin T and ST2 for heart failure risk stratification vs conventional assessment. Mayo Clin Proc. 2013;88(3):234–243. doi: 10.1016/j.mayocp.2012.09.016
  68. Ahmad T, Fiuzat M, Neely B, et al. Biomarkers of myocardial stress and fibrosis as predictors of mode of death in patients with chronic heart failure. JACC Heart Fail. 2014;2(3):260–268. doi: 10.1016/j.jchf.2013.12.004
  69. Alieva AM, Pinchuk TV, Voronkova KV, et al. Neopterin is a biomarker of chronic heart failure (review of modern literature). Consilium Medicum. 2021;23(10):756–759. (In Russ). doi: 10.26442/20751753.2021.10.201113
  70. Alieva AM, Baykova IE, Khadzhieva NH, et al. Resistin and cardiovascular pathology. Therapy. 2021;7(9):137–147. (In Russ). doi: 10.18565/therapy.2021.9.137-147

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия  ПИ № ФС 77 - 86296 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80632 от 15.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies