The infusion therapy in surgical patients with regard to monitoring of stroke volume and cardiac output

Abstract


The infusion therapy is the most important element of complex treatment of surgical patients at the stage of preparation to operation and narcosis directly during operation and also in post-operational period. Number of clinical situations dictates necessity of implementation of massive infusion therapy for urgent replacement of volume of circulating blood. In these cases, is extremely important comparison of velocity and volume of introduction of infusion mediums with capacity of human cardiovascular system adequately receive infusion load. This is an important clinical problem especially because of increasing in the structure of surgical patients of elder age and persons suffering with cardiovascular diseases. The article considers actual approaches to monitoring of stroke volume and cardiac output during infusion therapy in surgical patients under out-cardiosurgery operations.

Full Text

Restricted Access

About the authors

A. A Manevskiy

The N.I. Pirogov Russian national research medical university Minzdrav of Russia

117997, Moscow, Russian Federation

Sergey V. Sviridov

The N.I. Pirogov Russian national research medical university Minzdrav of Russia

Email: sergey.sviridov.59@mail.ru
117997, Moscow, Russian Federation
doctor of medical sciences, professor, head of chair of anesthesiology, resuscitation science and intensive therapy of medical faculty the N.I. Pirogov Russian national research medical university Minzdrav of Russia

References

  1. Shim H.J., Jang J.Y., Lee S.H., Lee J.G. The effect of positive balance on the outcomes of critically ill noncardiac postsurgical patients: a retrospective cohort study. J. Crit. Care. 2014; 29(1): 43-8.
  2. National Clinical Guideline Centre. Intravenous Fluid Therapy in Adults in Hospital. London (UK): National Institute for Health and Care Excellence (NICE); 2013.
  3. Гельфанд Б.Р., ред. Инфузионная терапия и парентеральное питание при сепсисе. М: Планида; 2013.
  4. Yang X., Du B. Does pulse pressure variation predict fluid responsiveness in critically ill patients? A systematic review and meta-analysis. Crit. Care. 2014; 18(6): 650.
  5. Пасечник И.Н., Смешной И.А., Губайдуллин Р.Р., Сальников П.С. Оптимизация инфузионной терапии при обширных абдоминальных операциях. Хирургия. 2015; (2): 25-9.
  6. Chawla L.S., Ince C., Chappell D., Gan T.J., Kellum J.A., Mythen M. et al. Vascular content, tone, integrity, and haemodynamics for guiding fluid therapy: a conceptual approach. Br. J. Anaesth. 2014; 113(5): 748-55.
  7. Pearse R.M., Harrison D.A., MacDonald N., Gillies M.A., Blunt M., Ackland G et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014; 311(21): 2181-90.
  8. Marx G, Schindler Achim W., Mosch Ch., Albers J., Bauer M., Gnass I. et al. Intravascular volume therapy in adults. Guidelines from the Association of the Scientific Medical Societies in Germany. Eur. J. Anaesthesiol. 2016; 33(7): 488-521.
  9. Ansari B.M., Zochios V., Falter F., Klein A.A. Physiological controversies and methods used to determine fluid responsiveness: a qualitative systematic review. Anaesthesia. 2016; 71(1): 94-105.
  10. Lewis S.R., Butler A.R., Brammar A., Nicholson A., Smith A.F. Perioperative fluid volume optimization following proximal femoral fracture. Cochrane Database Syst. Rev. 2016; (3): CD003004.
  11. Legrand G., Ruscio L., Benhamou D., Pelletier-Fleury N. Goal-directed fluid therapy guided by cardiac monitoring during high-risk abdominal surgery in adult patients: cost-effectiveness analysis of esophageal Doppler and arterial pulse pressure waveform analysis. Value Health. 2015; 18(5): 605-13.
  12. Lex D.J., Tóth R., Czobor N.R., Alexander S.I., Breuer T., Sápi E. et al. Fluid overload is associated with higher mortality and morbidity in pediatric patients undergoing cardiac surgery. Pediatr. Crit Care Med. 2016; 17(4): 307-14.
  13. Hoste E.A., Maitland K., Brudney C.S., Mehta R., Vincent J.L., Yates D., et al. Four phases of intravenous fluid therapy: a conceptual model. Br. J. Anaesth. 2014; 113(5): 740-7.
  14. Chelazzi C., Villa C., Mancinelli P., A Raffaele De Gaudio, Adembri Ch. Glycocalyx and sepsis-induced alterations in vascular permeability. Crit. Care. 2015; 19(1): 26.
  15. Chappell D., Jacob M. Role of the glycocalyx in fluid management: Small things matter. Best Pract. Res. Clin. Anaesthesiol. 2014; 28(3): 227-34.
  16. Nisanevich V., Felsenstein I., Almogy G., Weissman C., Einav S., Matot I. Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology. 2005; 103(1): 25-32.
  17. Trinooson C.D., Gold M.E. Impact of goal-directed perioperative fluid management in high-risk surgical procedures: a literature review. AANA J. 2013; 81(5): 357--68.
  18. Zhang J., Chen C.Q., Lei X.Z., Feng Z.Y., Zhu S.M. Goal-directed fluid optimization based on stroke volume variation and cardiac index during one-lung ventilation in patients undergoing thoracoscopy lobectomy operations: a pilot study. Clinics (Sao Paulo). 2013; 68(7): 1065-70.
  19. Nordström J., Hällsjö-Sander C., Shore R., Björne H. Stroke volume optimization in elective bowel surgery: a comparison between pulse power wave analysis (LiDCOrapid) and oesophageal Doppler (CardioQ). Br. J. Anaesth. 2013; 110(3): 374-80.
  20. Peng K., Cheng H., Ji F.H. Goal-directed fluid therapy based on stroke volume variations improves fluid management and gastrointestinal perfusion in patients undergoing major orthopedic surgery. Med. Princ. Pract. 2014; 23(5): 413-20.
  21. Phan T.D., D'Souza B., Rattray M.J., Johnston M.J., Cowie B.S. A randomised controlled trial of fluid restriction compared to oesophageal Doppler-guided goal-directed fluid therapy in elective major colorectal surgery within an Enhanced Recovery After Surgery program. Anaesth. Intensive Care. 2014; 42(6): 752-60.
  22. Waldron N.H., Miller T.E., Thacker J.K., Manchester A.K., White W.D., Nardiello J. et al. A prospective comparison of a noninvasive cardiac output monitor versus esophageal Doppler monitor for goal-directed fluid therapy in colorectal surgery patients. Anesth. Analg. 2014; 118(5): 966-75.
  23. Jammer I., Tuovila M., Ulvik A. Stroke volume variation to guide fluid therapy: is it suitable for high-risk surgical patients? A terminated randomized controlled trial. Perioper. Med (Lond), 2015; 4: 6.
  24. Ripollés-Melchor J., Espinosa Á., Martínez-Hurtado E., Abad-Gurumeta A., Casans-Francés R., Fernández-Pérez C. et al. Perioperative goal-directed hemodynamic therapy in noncardiac surgery: a systematic review and meta-analysis. J. Clin. Anesth. 2016; 28: 105-15.
  25. Rivers E., Nguyen B., Havstad S., Ressler J., Muzzin A., Knoblich B. et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 2001; 345(19): 1368-77.
  26. Carsetti A., Cecconi M., Rhodes A. Fluid bolus therapy: monitoring and predicting fluid responsiveness. Curr. Opin. Crit. Care. 2015; 21(5): 388-94.
  27. Hasanin A. Author in for Fluid responsiveness in acute circulatory failure. J. Intensive Care. 2015; 3: 50.
  28. Киров М.Ю. Ленькин А.И., Кузьков В.В. Применение волюметрического мониторинга на основе транспульмональной гемодилюции при кардиохирургических вмешательствах. Общая реаниматология. 2005; 1(6): 70-9.
  29. Thiele R.H., Bartels K., Gan T.J. Cardiac output monitoring: a contemporary assessment and review. Crit. Care Med. 2015; 43(1): 177-85.
  30. Guerin L., Monnet X., Teboul J.L. Monitoring volume and fluid responsiveness: from static to dynamic indicators. Best Pract. Res. Clin. Anaesthesiol. 2013; 27(2): 177-85.
  31. Rinehart J., Le Manach Y., Douiri H., Lee C., Lilot M., Le K. et al. First closed-loop goal directed fluid therapy during surgery: a pilot study. Ann. Fr. Anesth. Reanim. 2014; 33(3): e35-41.
  32. Huang L., Critchley L.A., Zhang J. Major upper abdominal surgery alters the calibration of bioreactance cardiac output readings, the NICOM, when comparisons are made against suprasternal and esophageal doppler intraoperatively. Anesth Analg. 2015; 121(4): 936-45.
  33. Suehiro K., Tanaka K., Mukai A., Joosten A., Desebbe O., Alexander B. et al. Hemodynamic monitoring and management in high-risk surgery: a survey among Japanese anesthesiologists. J. Anesth. 2016; 30(3): 526-9.
  34. Abbas S.M., Hill A.G. Systematic review of the literature for the use of oesophageal Doppler monitor for fluid replacement in major abdominal surgery. Anaesthesia. 2008; 63(1): 44-51.
  35. Walsh S.R., Tang T., Bass S., Gaunt M.E. Doppler-guided intra-operative fluid management during major abdominal surgery: systematic review and meta-analysis. Int. J. Clin. Pract. 2008; 62(3): 466-70.
  36. Srinivasa S., Taylor M.H., Sammour T., Kahokehr A.A., Hill A.G. Oesophageal Doppler-guided fluid administration in colorectal surgery: critical appraisal of published clinical trials. Acta Anaesthesiol. Scand., 2011; 55(1): 4-13.
  37. Kuper M., Gold S.J., Callow C., Quraishi T., King S., Mulreany A. et al. Intraoperative fluid management guided by oesophageal Doppler monitoring. BMJ. 2011; 342: d3016.
  38. McKenny M., O'Malley C., Mehigan B., McCormick P., Dowd N. Introduction of oesophageal Doppler-guided fluid management in a laparoscopic colorectal surgery enhanced recovery programme: an audit of effect on patient outcome. Ir. Med. J. 2014; 107(5): 135-8.
  39. Wuethrich P.Y., Burkhard F.C., Thalmann G.N., Stueber F., Studer U.E. Restrictive deferred hydration combined with preemptive norepinephrine infusion during radical cystectomy reduces postoperative complications and hospitalization time: a randomized clinical trial. Anesthesiology. 2014; 120(2): 365.
  40. Bahlmann H., Hahn R.G., Nilsson L. Agreement between Pleth Variability Index and oesophageal Doppler to predict fluid responsiveness. Acta Anaesthesiol. Scand. 2016; 60(2): 183-92.
  41. Ripollés-Melchor J., Casans-Francés R., Espinosa A., Abad-Gurumeta A., Feldheiser A., López-Timoneda F. Goal directed hemodynamic therapy based in esophageal Doppler flow parameters: A systematic review, meta-analysis and trial sequential analysis. Rev. Esp. Anestesiol. Reanim. 2016; 63(7): 384-405.
  42. Сторожаков Г.И., Горбаченков А.А., ред. Руководство по кардиологии: Учебное пособие в 3 т. Т. 1. М: Гэотар-Медиа; 2008.
  43. Blanié A., Soued M., Benhamou D., Mazoit J.X., Duranteau J. A Comparison of Photoplethysmography Versus Esophageal Doppler for the Assessment of Cardiac Index During Major Noncardiac Surgery. Anesth Analg. 2016; 122(2): 430-6.
  44. Chen Y., Fu Q., Mi W.D. Effects of stroke volume variation, pulse pressure variation, and pleth variability index in predicting fluid responsiveness during different positive end expiratory pressure in prone position. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2015; 37(2): 179-84.
  45. Choi J.W., Kim D.K., Lee S.W., Park J.B., Lee G.H. Efficacy of intravenous fluid warming during goal-directed fluid therapy in patients undergoing laparoscopic colorectal surgery: a randomized controlled trial. J. Int. Med. Res. 2016; 44(3): 605-12.
  46. Argueta E., Berdine G., Pena C., Nugent K.M. FloTrac® monitoring system: what are its uses in critically ill medical patients? Am. J. Med. Sci. 2015; 349(4): 352-6.
  47. Davies S.J., Minhas S., Wilson R.J., Yates D., Howell S.J. Comparison of stroke volume and fluid responsiveness measurements in commonly used technologies for goal-directed therapy. J. Clin. Anesth. 2013; 25(6): 466-74.
  48. Scheeren T.W., Wiesenack C., Gerlach H., Marx G. Goal-directed intraoperative fluid therapy guided by stroke volume and its variation in high-risk surgical patients: a prospective randomized multicentre study. J. Clin. Monit Comput. 2013; 27(3): 225-33.
  49. Bacchin M.R., Ceria C.M., Giannone S., Ghisi D., Stagni G., Greggi T. et al. Goal directed fluid therapy based on stroke volume variation in patients undergoing major spine surgery in the prone position: a cohort study. Spine (Phila Pa 1976). 2016 Apr 1. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27046635
  50. Mallat J., Meddour M., Durville E., Lemyze M., Pepy F., Temime J. et al. Decrease in pulse pressure and stroke volume variations after mini-fluid challenge accurately predicts fluid responsiveness. Br. J. Anaesth. 2015; 115(3): 449-56.
  51. Siswojo A.S., Wong D.M., Phan T.D., Kluger R. Pleth variability index predicts fluid responsiveness in mechanically ventilated adults during general anesthesia for noncardiac surgery. J. Cardiothorac. Vasc. Anesth. 2014; 28(6): 1505-9.
  52. Hu C., Tong H., Cai G., Teboul J., Yan J. Bioreactance-based passive leg raising test can predict fluid responsiveness in patients with sepsis. Crit. Care. 2015; 19(Suppl.): P177.
  53. Ernstbrunner M., Kostner L., Kimberger O., Wabel P., Säemann M., Markstaller K. et al. Bioimpedance spectroscopy for assessment of volume status in patients before and after general anaesthesia. PLoS One. 2014; 9(10): e111139.
  54. Matsuda Y., Kawate H., Shimada S., Matsuzaki C., Nagata H., Adachi M. Perioperative sequential monitoring of hemodynamic parameters in patients with pheochromocytoma using the Non-Invasive Cardiac System (NICaS). Endocr. J. 2014; 61(6): 571-5.
  55. Kupersztych-Hagege E., Teboul J.L., Artigas A., Talbot A., Sabatier C., Richard C. et al. Bioreactance is not reliable for estimating cardiac output and the effects of passive leg raising in critically ill patients. Br. J. Anaesth. 2013; 111(6): 961-6.
  56. Min J.J., Lee J.H., Hong K.Y., Choi S.J. Utility of stroke volume variation measured using non-invasive bioreactance as a predictor of fluid responsiveness in the prone position. J. Clin. Monit. Comput. 2016 Mar 10. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26964992
  57. Bartha E., Arfwedson C., Imnell A., Kalman S. Towards individualized perioperative, goal-directed haemodynamic algorithms for patients of advanced age: observations during a randomized controlled trial (NCT01141894). Br. J. Anaesth. 2016; 116(4): 486-92.
  58. Samoni S., Vigo V., Reséndiz L.I., Villa G., De Rosa S., Nalesso F. et al. Impact of hyperhydration on the mortality risk in critically ill patients admitted in intensive care units: comparison between bioelectrical impedance vector analysis and cumulative fluid balance recording. Crit. Care. 2016; 20(1): 95.
  59. Rollins K., Lobo N. Intraoperative Goal-directed Fluid Therapy in Elective Major Abdominal Surgery. A Meta-analysis of Randomized Controlled Trials. Ann. Surg. 2016; 263(3): 465-76.

Statistics

Views

Abstract - 78

PDF (Russian) - 0

Cited-By


Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.

Copyright (c) 2016 Eco-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies