Diagnostic, prognostic and therapeutic aspects of apelin in cardiovascular diseases

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Biological markers have been thoroughly incorporated into clinical practice as a convenient and simple method for diagnosing and monitoring the condition of patients. The analysis of biomarkers has found its niche in oncology; however, their application in cardiovascular diseases is still in its infancy. Studies on apelin indicate the potential diagnostic and prognostic significance of the assessment of this marker in patients with cardiovascular diseases. The beneficial effect of apelin on the heart and blood vessels allows us to consider this marker as a therapeutic target. The combination of apelin with other biological markers, particularly brain natriuretic peptide and its precursor, may increase the predictive value of apelin.

Full Text

Restricted Access

About the authors

Amina M. Alieva

N.I. Pirogov Russian National Research Medical University

Author for correspondence.
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579
SPIN-code: 2749-6427

MD, Cand. Sci. (Medicine), associate professor

Russian Federation, Moscow

Natalia V. Teplova

N.I. Pirogov Russian National Research Medical University

Email: teplova.nv@yandex.ru
ORCID iD: 0000-0002-7181-4680

MD, Dr. Sci. (Medicine), professor

Russian Federation, Moscow

Elena V. Reznik

N.I. Pirogov Russian National Research Medical University

Email: elenaresnik@gmail.com
ORCID iD: 0000-0001-7479-418X
SPIN-code: 3494-9080

MD, Dr. Sci. (Medicine), professor

Russian Federation, Moscow

Irina E. Baykova

N.I. Pirogov Russian National Research Medical University

Email: 1498553@mail.ru
ORCID iD: 0000-0003-0886-6290
SPIN-code: 3054-8884

MD, Cand. Sci. (Medicine), associate professor

Russian Federation, Moscow

Nyurzhanna Kh. Khadzhieva

DNA Genetics Clinic «MedEstet»

Email: nurzhanna@yandex.ru
ORCID iD: 0000-0002-5520-281X
SPIN-code: 2520-8520

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Bela Z. Balagova

Serbsky National Medical Research Center for Psychiatry and Narcology

Email: 3088919@mail.ru
ORCID iD: 0009-0009-4556-1534
Russian Federation, Moscow

Alik M. Rakhaev

Kabardino-Balkarian State University named after H.M. Berbekov

Email: alikrahaev@yandex.ru
ORCID iD: 0000-0001-9601-1174

MD, Dr. Sci. (Medicine), professor

Russian Federation, Nalchik

Dzhannet A. Elmurzaeva

Kabardino-Balkarian State University named after H.M. Berbekov

Email: jannet.elmurzaeva@yandex.ru
ORCID iD: 0000-0002-5640-6638
SPIN-code: 7284-3749

MD, Cand. Sci. (Medicine), associate professor

Russian Federation, Nalchik

Makhty I. Akkiev

Kabardino-Balkarian State University named after H.M. Berbekov

Email: mahakki@yandex.ru
Russian Federation, Nalchik

Madina Ya. Shavaeva

Kabardino-Balkarian State University named after H.M. Berbekov

Email: Shavaeva.madina@icloud.com
ORCID iD: 0000-0001-5907-3026
Russian Federation, Nalchik

Irina A. Kotikova

N.I. Pirogov Russian National Research Medical University

Email: kotikova.ia@mail.ru
ORCID iD: 0000-0001-5352-8499
SPIN-code: 1423-7300
Russian Federation, Moscow

Igor G. Nikitin

N.I. Pirogov Russian National Research Medical University

Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881

MD, Dr. Sci. (Medicine), professor

Russian Federation, Moscow

References

  1. Shlyakhto EV, Zvartau NE, Villevalde SV, et al. Cardiovascular risk management system: prerequisites for developing, organization principles, target groups. Russian Journal of Cardiology. 2019;24(11):69–82. EDN: YLFHXE doi: 10.15829/1560-4071-2019-11-69-82.
  2. GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1659–1724. Corrected and republished from: Lancet. 2017;389(10064):e1. doi: 10.1016/S0140-6736(16)31679-8
  3. Li H, Zou J, Yu XH, et al. Zinc finger E-box binding homeobox 1 and atherosclerosis: new insights and therapeutic potential. J Cell Physiol. 2021;236:4216–4230. doi: 10.1002/jcp.30177
  4. Aliyeva AM, Reznik EV, Hasanova ET, et al. Clinical value of blood biomarkers in patients with chronic heart failure. The Russian Archives of Internal Medicine. 2018;8(5):333–345. EDN: YKJWIP doi: 10.20514/2226-6704-2018-8-5-333-345
  5. Alieva AM, Almazova II, Pinchuk TV, et al. The value of copeptin in the diagnosis and prognosis of cardiovascular diseases. Clinical Medicine (Russian Jornal). 2020;98(3):20–209. EDN: IBOPWG doi: 10.30629/0023-2149-2020-98-3-203-209
  6. Golukhova EZ, Teryaeva NB, Alieva AM. Natriuretic peptides — markers and prognosis factors in chronic heart failure. Creative cardiolog (Russian Jornal). 2007;1-2:126–136.
  7. Golukhova EZ, Alieva AM. Clinical significance of determining natriuretic peptides in patients with chronic heart failure. Cardiology and cardiovascular surgery (Russian Jornal). 2007; 47(1):45–51.
  8. Tatemoto K, Hosoya M, Habata Y, et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun. 1998;251(2):471–476. doi: 10.1006/bbrc.1998.9489
  9. Li A, Zhao Q, Chen L, et al. Apelin/APJ system: an emerging therapeutic target for neurological diseases. Mol Biol Rep. 2023;50(2):1639–1653. doi: 10.1007/s11033-022-08075-9
  10. Wysocka MB, Pietraszek-Gremplewicz K, Nowak D. The role of apelin in cardiovascular diseases, obesity and cancer. Front Physiol. 2018;9:557. doi: 10.3389/fphys.2018.00557
  11. Fargieva KR, Guseinova RM, Pigarova EA, Dzeranova LK. The role of the apelin/APJ system in water homeostasis regulation. Obesity and Metabolism. 2022;19(3):340–347. EDN: LSNEWG doi: 10.14341/omet12752
  12. Li J, Chen Z, Chen J, Yu Y. The beneficial roles of apelin-13/APJ system in cerebral ischemia: pathogenesis and therapeutic strategies. Front Pharmacol. 2022;13:903151. doi: 10.3389/fphar.2022.903151
  13. Shpakov AO, Derkach KV. The role of apelin in the functioning of the reproductive system. Acta Biomedica Scientifica. 2019;4(3):7–17. EDN: DEQSMF doi: 10.29413/ABS.2019-4.3.1
  14. Rozwadowski J, Borodzicz-Jażdżyk S, Czarzasta K, Cudnoch-Jędrzejewska A. A review of the roles of apelin and ELABELA peptide ligands in cardiovascular disease, including heart failure and hypertension. Med Sci Monit. 2022;28:e938112. doi: 10.12659/MSM.938112
  15. Chng SC, Ho L, Tian J, Reversade B. ELABELA: a hormone essential for heart development signals via the apelin receptor. Dev Cell. 2013;27(6):672–680. doi: 10.1016/j.devcel.2013.11.002
  16. Liu W, Yan J, Pan W, Tang M. Apelin/Elabela-APJ: a novel therapeutic target in the cardiovascular system. Ann Transl Med. 2020;8(5):243. doi: 10.21037/atm.2020.02.07
  17. Peverelli E, Mantovani G, Lania AG, Spada A. cAMP in the pituitary: an old messenger for multiple signals. J Mol Endocrinol. 2013;52(1):R67–R77. doi: 10.1530/JME-13-0172
  18. Xu J, Chen L, Jiang Z, et al. Biological functions of Elabela, a novel endogenous ligand of APJ receptor. J Cell Physiol. 2018;233(9): 6472–6482. doi: 10.1002/jcp.26492
  19. Pang B, Jiang YR, Xu JY, et al. Apelin/ELABELA-APJ system in cardiac hypertrophy: regulatory mechanisms and therapeutic potential. Eur J Pharmacol. 2023;949:175727. doi: 10.1016/j.ejphar.2023.175727
  20. Murali S, Aradhyam GK. Structure-function relationship and physiological role of apelin and its G protein coupled receptor. Biophys Rev. 2023;15(1):127–143. Corrected and republished from: Biophys Rev. 2023;15(2):293–294. doi: 10.1007/s12551-023-01044-x
  21. Mughal A, O’Rourke ST. Vascular effects of apelin: mechanisms and therapeutic potential. Pharmacol Ther. 2018;190:139–147. doi: 10.1016/j.pharmthera.2018.05.013
  22. Than A, Cheng Y, Foh LC, et al. Apelin inhibits adipogenesis and lipolysis through distinct molecular pathways. Mol Cell Endocrinol. 2012;362(1-2):227–241. doi: 10.1016/j.mce.2012.07.002
  23. Chu J, Zhang H, Huang X, et al. Apelin ameliorates TNF-α-induced reduction of glycogen synthesis in the hepatocytes through G protein-coupled receptor APJ. PLoS One. 2013;8(2):e57231. Corrected and republished from: PLoS One. 2013;8(8). doi: 10.1371/journal.pone.0057231
  24. Hu G, Wang Z, Zhang R, et al. The role of apelin/apelin receptor in energy metabolism and water homeostasis: a comprehensive narrative review. Front Physiol. 2021;12:632886. doi: 10.3389/fphys.2021.632886
  25. Reaux A, De Mota N, Skultetyova I, et al. Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J Neurochem. 2001;77(4):1085–1096. doi: 10.1046/j.1471-4159.2001.00320.x
  26. Hus-Citharel A, Bouby N, Frugière A, et al. Effect of apelin on glomerular hemodynamic function in the rat kidney. Kidney Int. 2008;74(4):486–494. doi: 10.1038/ki.2008.199
  27. Boulkeroua C, Ayari H, Khalfaoui T, et al. Apelin-13 regulates vasopressin-induced aquaporin-2 expression and trafficking in kidney collecting duct cells. Cell Physiol Biochem. 2019;53(4): 687–700. doi: 10.33594/000000165
  28. Japp AG, Newby DE. Unlocking the therapeutic potential of apelin. Hypertension. 2016;68(2):307–309. doi: 10.1161/HYPERTENSIONAHA.116.07057
  29. Mughal A, Sun C, O’Rourke ST. Activation of large conductance, calcium-activated potassium channels by nitric oxide mediates apelin-induced relaxation of isolated rat coronary arteries. J Pharmacol Exp Ther. 2018;366(2):265–273. doi: 10.1124/jpet.118.248682
  30. Sahinturk S, Demirel S, Ozyener F, Isbil N. Apelin-13 relaxes the rat thoracic aorta via APJ, NO, AMPK, and potassium channels. Gen Physiol Biophys. 2021;40(5):427–434. doi: 10.4149/gpb_20210258
  31. Rossin D, Vanni R, Lo Iacono M, et al. APJ as promising therapeutic target of peptide analogues in myocardial infarction- and hypertension-induced heart failure. Pharmaceutics. 2023;15(5):1408. doi: 10.3390/pharmaceutics15051408
  32. Rikitake Y. The apelin/APJ system in the regulation of vascular tone: friend or foe? J Biochem. 2021;169(4):383–386. doi: 10.1093/jb/mvaa129
  33. Sahinturk S, Demirel S, Ozyener F, Isbil N. Vascular functional effect mechanisms of Elabela in rat thoracic aorta. Ann Vasc Surg. 2022;84:381–397. doi: 10.1016/j.avsg.2022.04.033
  34. Saint-Geniez M, Masri B, Malecaze F, et al. Expression of the murine msr/apj receptor and its ligand apelin is upregulated during formation of the retinal vessels. Mech Dev. 2002;110(1-2):183–186. doi: 10.1016/s0925-4773(01)00558-5
  35. Pauli A, Norris ML, Valen E, et al. Toddler: an embryonic signal that promotes cell movement via apelin receptors. Science. 2014;343(6172):1248636. doi: 10.1126/science.1248636
  36. Helker CS, Eberlein J, Wilhelm K, et al. Apelin signaling drives vascular endothelial cells toward a pro-angiogenic state. Elife. 2020;9:e55589. doi: 10.7554/eLife.55589
  37. Wang X, Liang G, Guo Q, et al. ELABELA improves endothelial cell function via the ELA-APJ axis by activating the PI3K/Akt signalling pathway in HUVECs and EA.hy926 cells. Clin Exp Pharmacol Physiol. 2020;47(12):1953–1964. doi: 10.1111/1440-1681.13382
  38. Li L, Zeng H, Hou X, et al. Myocardial injection of apelin-overexpressing bone marrow cells improves cardiac repair via upregulation of Sirt3 after myocardial infarction. PLoS One. 2013;8(9):e71041. doi: 10.1371/journal.pone.0071041
  39. Akboga MK, Akyel A, Sahinarslan A, et al. Relationship between plasma apelin level and coronary collateral circulation. Atherosclerosis. 2014;235(2):289–294. doi: 10.1016/j.atherosclerosis.2014.04.029
  40. Wang W, McKinnie SM, Patel VB, et al. Loss of apelin exacerbates myocardial infarction adverse remodeling and ischemia-reperfusion injury: therapeutic potential of synthetic apelin analogues. J Am Heart Assoc. 2013;2(4):e000249. doi: 10.1161/JAHA.113.000249
  41. Zeng H, He X, Hou X, et al. Apelin gene therapy increases myocardial vascular density and ameliorates diabetic cardiomyopathy via upregulation of sirtuin 3. Am J Physiol Heart Circ Physiol. 2014;306(4):H585–H597. doi: 10.1152/ajpheart.00821.2013
  42. Du JH, Li X, Li R, et al. Elevation of serum apelin-13 associated with proliferative diabetic retinopathy in type 2 diabetic patients. Int J Ophthalmol. 2014;7(6):968–973. doi: 10.3980/j.issn.2222-3959.2014.06.10
  43. Wang C, Wen J, Zhou Y, et al. Apelin induces vascular smooth muscle cells migration via a PI3K/Akt/FoxO3a/MMP-2 pathway. Int J Biochem Cell Biol. 2015;69:173–182. doi: 10.1016/j.biocel.2015.10.015
  44. Hou J, Wang L, Long H, et al. Hypoxia preconditioning promotes cardiac stem cell survival and cardiogenic differentiation in vitro involving activation of the HIF-1alpha/apelin/APJ axis. Stem Cell Res Ther. 2017;8(1):215. doi: 10.1186/s13287-017-0673-4
  45. Zhang H, Gong Y, Wang Z, et al. Apelin inhibits the proliferation and migration of rat PASMCs via the activation of PI3K/Akt/mTOR signal and the inhibition of autophagy under hypoxia. J Cell Mol Med. 2014;18(3):542–553. doi: 10.1111/jcmm.12208
  46. Kim J, Kang Y, Kojima Y, et al. An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension. Nat Med. 2013;19(1):74–82. doi: 10.1038/nm.3040
  47. Fan XF, Xue F, Zhang YQ, et al. The apelin-APJ axis is an endogenous counterinjury mechanism in experimental acute lung injury. Chest. 2015;147(4):969–978. doi: 10.1378/chest.14-1426
  48. Kuba K, Zhang L, Imai Y, et al. Impaired heart contractility in apelin gene–deficient mice associated with aging and pressure overload. Circ Res. 2007;101(4):e32–e42. Corrected and republished from: Circ Res. 2008;102(2):e36. doi: 10.1161/CIRCRESAHA.107.158659
  49. Perjés Á, Kilpiö T, Ulvila J, et al. Characterization of apela, a novel endogenous ligand of apelin receptor, in the adult heart. Basic Res Cardiol. 2016;111(1):2. doi: 10.1007/s00395-015-0521-6
  50. Seo K, Parikh VN, Ashley EA. Stretch-induced biased signaling in angiotensin II type 1 and apelin receptors for the mediation of cardiac contractility and hypertrophy. Front Physiol. 2020;11:181. doi: 10.3389/fphys.2020.00181
  51. Berry MF, Pirolli TJ, Jayasankar V, et al. Apelin has in vivo inotropic effects on normal and failing hearts. Circulation. 2004;110 Suppl. 1:II187–II193. doi: 10.1161/01.CIR.0000138382.57325.5c
  52. Peyronnet R, Bollensdorff C, Capel RA, et al. Load-dependent effects of apelin on murine cardiomyocytes. Prog Biophys Mol Biol. 2017;130(Pt B):333–343. doi: 10.1016/j.pbiomolbio.2017.09.013
  53. Folino A, Accomasso L, Giachino C, et al. Apelin-induced cardioprotection against ischaemia/reperfusion injury: roles of epidermal growth factor and Src. Acta Physiol (Oxf). 2018; 222(2):10.1111/apha.12924. doi: 10.1111/apha.12924
  54. Rakhshan K, Azizi Y, Naderi N, et al. ELABELA (ELA) peptide exerts cardioprotection against myocardial infarction by targeting oxidative stress and the improvement of heart function. International Journal of Peptide Research and Therapeutics. 2018;25(2):613–621. doi: 10.1007/s10989-018-9707-8
  55. Yu P, Ma S, Dai X, et al. Elabela alleviates myocardial ischemia reperfusion-induced apoptosis, fibrosis and mitochondrial dysfunction through PI3K/AKT signaling. Am J Transl Res. 2020;12(8):4467–4477.
  56. Japp AG, Cruden NL, Barnes G, et al. Acute cardiovascular effects of apelin in humans: potential role in patients with chronic heart failure. Circulation. 2010;121(16):1818–1827. doi: 10.1161/CIRCULATIONAHA.109.911339
  57. Japp AG, Cruden NL, Amer DAB, et al. Vascular effects of apelin in vivo in man. J Am Coll Cardiol. 2008;52(11):908–913. doi: 10.1016/j.jacc.2008.06.013
  58. Feng J, Yang W, Luan F, et al. The protective role of apelin in the early stages of diabetic retinopathy. Int J Mol Sci. 2022;23(23):14680. doi: 10.3390/ijms232314680
  59. Xu C. Cardiovascular aspects of ELABELA: a potential diagnostic biomarker and therapeutic target. Vascul Pharmacol. 2023;151:107193. doi: 10.1016/j.vph.2023.107193
  60. Kadoglou NP, Sailer N, Moumtzouoglou A, et al. Adipokines: a novel link between adiposity and carotid plaque vulnerability. Eur J Clin Invest. 2012;42(12):1278–1286. doi: 10.1111/j.1365-2362.2012.02728.x
  61. Hendrianus, Adiarto S, Prakoso R, et al. A novel peptide elabela is associated with hypertension-related subclinical atherosclerosis. High Blood Press Cardiovasc Prev. 2023;30(1):37–44. doi: 10.1007/s40292-022-00554-1
  62. Pisarenko OI, Serebryakova LI, Studneva IM, et al. Effects of structural analogues of apelin-12 in acute myocardial infarction in rats. J Pharmacol Pharmacother. 2013;4(3):198–203. doi: 10.4103/0976-500X.114600
  63. Tempel D, de Boer M, van Deel ED, et al. Apelin enhances cardiac neovascularization after myocardial infarction by recruiting Aplnr+ circulating cells. Circ Res. 2012;111(5):585–598. doi: 10.1161/CIRCRESAHA.111.262097
  64. Chen T, Wu B, Lin R. Association of apelin and apelin receptor with the risk of coronary artery disease: a meta-analysis of observational studies. Oncotarget. 2017;8(34):57345–57355. doi: 10.18632/oncotarget.17360
  65. Rudakova DM, Veselovskaya NG, Chumakova GA, et al. Predictors of coronary atherosclerosis at men with metabolic syndrome. Complex Issues of Cardiovascular Diseases. 2017;6(3):84–92. EDN: ZGYZBD
  66. Liu Y, Xia H, Li M, et al. Prognostic value of combining apelin-12 and estimated glomerular filtration rate in patients with ST-segment elevation myocardial infarction. J Interv Cardiol. 2022;2022:2272928. doi: 10.1155/2022/2272928
  67. Zhang W, Zhang J, Jin F, Zhou H. Efficacy of felodipine and enalapril in the treatment of essential hypertension with coronary artery disease and the effect on levels of Salusin-β, Apelin, and PON1 gene expression in patients. Cell Mol Biol (Noisy-le-grand). 2022;67(6):174–180. doi: 10.14715/cmb/2021.67.6.24
  68. Zhang Q, Shen Y, Niloy SI, et al. Chronic effects of apelin on cardiovascular regulation and angiotensin II-induced hypertension. Pharmaceuticals (Basel). 2023;16(4):600. doi: 10.3390/ph16040600
  69. Chun HJ, Ali ZA, Kojima Y, et al. Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis. J Clin Invest. 2008;118(10):3343–3354. doi: 10.1172/JCI34871
  70. Ishida J, Hashimoto T, Hashimoto Y, et al. Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo. J Biol Chem. 2004;279(25): 26274–26279. doi: 10.1074/jbc.M404149200
  71. Siddiquee K, Hampton J, Khan S, et al. Apelin protects against angiotensin II-induced cardiovascular fibrosis and decreases plasminogen activator inhibitor type-1 production. J Hypertens. 2011;29(4):724–731. doi: 10.1097/HJH.0b013e32834347de
  72. Baysal SS, Pirat B, Okyay K, et al. Treatment-associated change in apelin concentration in patients with hypertension and its relationship with left ventricular diastolic function. Anatol J Cardiol. 2017;17(2):125–131. doi: 10.14744/AnatolJCardiol.2016.7035
  73. Papadopoulos DP, Mourouzis I, Faselis C, et al. Masked hypertension and atherogenesis: the impact of apelin and relaxin plasma levels. J Clin Hypertens (Greenwich). 2013;15(5):333–336. doi: 10.1111/jch.12075
  74. Liakos CI, Sanidas EA, Perrea DN, et al. Apelin and visfatin plasma levels in healthy individuals with high normal blood pressure. Am J Hypertens. 2016;29(5):549–552. doi: 10.1093/ajh/hpv136
  75. Alaamri S, Serafi AS, Hussain Z, et al. Blood pressure correlates with serum leptin and body mass index in overweight male Saudi students. J Pers Med. 2023;13(5):828. doi: 10.3390/jpm13050828
  76. Huang F, Zhu P, Huang Q, et al. Associations between gene polymorphisms of the apelin-APJ system and the risk of hypertension. Blood Press. 2016;25(4):257–262. doi: 10.3109/08037051.2016.1156905
  77. Li G, Sun X, Zhao D, et al. A promoter polymorphism in APJ gene is significantly associated with blood pressure changes and hypertension risk in Chinese women. Oncotarget. 2016;7(52): 86257–86265. doi: 10.18632/oncotarget.13370
  78. Li Y, Yang X, Ouyang S, et al. Declined circulating Elabela levels in patients with essential hypertension and its association with impaired vascular function: a preliminary study. Clin Exp Hypertens. 2020;42(3):239–243. doi: 10.1080/10641963.2019.1619756
  79. Foris V, Kovacs G, Avian A, et al. Apelin-17 to diagnose idiopathic pulmonary arterial hypertension: a biomarker study. Front Physiol. 2023;13:986295. doi: 10.3389/fphys.2022.986295
  80. Pisarenko OI, Shulzhenko VS, Studneva IM, et al. Signaling pathways of a structural analogue of apelin-12 involved in myocardial protection against ischemia/reperfusion injury. Peptides. 2015;73: 67–76. doi: 10.1016/j.peptides.2015.09.001
  81. Than A, Zhang X, Leow MK, et al. Apelin attenuates oxidative stress in human adipocytes. J Biol Chem. 2014;289(6):3763–3774. doi: 10.1074/jbc.M113.526210
  82. Li L, Zeng H, Chen JX. Apelin-13 increases myocardial progenitor cells and improves repair postmyocardial infarction. Am J Physiol Heart Circ Physiol. 2012;303(5):H605–H618. doi: 10.1152/ajpheart.00366.2012
  83. Tao J, Zhu W, Li Y, et al. Apelin-13 protects the heart against ischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion. Am J Physiol Heart Circ Physiol. 2011;301(4):H1471–H1486. doi: 10.1152/ajpheart.00097.2011
  84. Pchejetski D, Foussal C, Alfarano C, et al. Apelin prevents cardiac fibroblast activation and collagen production through inhibition of sphingosine kinase 1. Eur Heart J. 2012;33(18):2360–2369. doi: 10.1093/eurheartj/ehr389
  85. Falcão-Pires I, Ladeiras-Lopes R, Leite-Moreira AF. The apelinergic system: a promising therapeutic target. Expert Opin Ther Targets. 2010;14(6):633–645. doi: 10.1517/14728221003752743
  86. Ashley EA, Powers J, Chen M, et al. The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovas Res. 2005;65(1):73–82. doi: 10.1016/j.cardiores.2004.08.018
  87. Parikh VN, Liu J, Shang C, et al. Apelin and APJ orchestrate complex tissue-specific control of cardiomyocyte hypertrophy and contractility in the hypertrophy-heart failure transition. Am J Physiol Heart Circ Physiol. 2018;315(2):H348–H356. doi: 10.1152/ajpheart.00693.2017
  88. Salska A, Dziuba M, Salski W, et al. Apelin and atrial fibrillation: the role in the arrhythmia recurrence prognosis. Dis Markers. 2018;2018:5285392. doi: 10.1155/2018/5285392
  89. Gurger M, Celik A, Balin M, et al. The association between apelin-12 levels and paroxysmal supraventricular tachycardia. J Cardiovasc Med (Hagerstown). 2014;15(8):642–646. doi: 10.2459/JCM.0000000000000010
  90. Falcone C, Buzzi MP, D’Angelo A, et al. Apelin plasma levels predict arrhythmia recurrence in patients with persistent atrial fibrillation. Int J Immunopathol Pharmacol. 2010;23(3):917–925. doi: 10.1177/039463201002300328
  91. Bezak B, Snopek P, Tothova L, et al. Plasmatic apelin shows a promising potential as a screening biomarker for atrial fibrillation. Bratisl Lek Listy. 2023;124(5):368–372. doi: 10.4149/BLL_2023_056
  92. Ma Z, Zhao L, Zhang YP, et al. Declined ELABELA plasma levels in hypertension patients with atrial fibrillation: a case control study. BMC Cardiovasc Disord. 2021;21(1):390. doi: 10.1186/s12872-021-02197-x
  93. Barnes GD, Alam S, Carter G, et al. Sustained cardiovascular asctions of APJ agonism during renin–angiotensin system activation and in patients with heart failure. Circ Heart Fail. 2013;6(3):482–491. doi: 10.1161/CIRCHEARTFAILURE.111.000077
  94. Gao LR, Xu RY, Zhang NK, et al. Increased apelin following bone marrow mononuclear cell transplantation contributes to the improvement of cardiac function in patients with severe heart failure. Cell Transplant. 2009;18(12):1311–1318. doi: 10.3727/096368909X474843
  95. Gourdy P, Cazals L, Thalamas C, et al. Apelin administration improves insulin sensitivity in overweight men during hyperinsulinaemic-euglycaemic clamp. Diabetes Obes Metab. 2018;20(1):157–164. doi: 10.1111/dom.13055
  96. Antushevich H, Wójcik M. Review: apelin in disease. Clin Chim Acta. 2018;483:241–248. doi: 10.1016/j.cca.2018.05.012
  97. Dolgikh YuA, Verbovoy AF. Apelin: biological and pathophysiological effects. Farmateka. 2018;11:34–38. EDN: YOZMFV doi: 10.18565/pharmateca.2018.11.34-38
  98. Chen B, Wu J, Hu S, et al. Apelin-13 improves cognitive impairment and repairs hippocampal neuronal damage by activating PGC-1α/PPARγ signaling. Neurochem Res. 2023;48(5): 1504–1515. Corrected and republished from: Neurochem Res. 2023. doi: 10.1007/s11064-022-03844-1
  99. Zhang R, Wu F, Cheng B, et al. Apelin-13 prevents the effects of oxygen-glucose deprivation/reperfusion on bEnd.3 cells by inhibiting AKT-mTOR signaling. Exp Biol Med (Maywood). 2023;248(2):146–156. doi: 10.1177/15353702221139186
  100. Tejeswini Sen T, Kale A, Lech M, et al. Promising novel therapeutic targets for kidney disease: emphasis on kidney-specific proteins. Drug Discov Today. 2023;28(2):103466. doi: 10.1016/j.drudis.2022.103466
  101. Chen J, Wang Z, Zhang R, et al. Heterodimerization of apelin and opioid receptor-like 1 receptor mediates apelin-13-induced G protein biased signaling. Life Sci. 2023;328:121892. doi: 10.1016/j.lfs.2023.121892

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of the apelin: a — structure of the apelin precursor, a 77-amino acid preproapelin; b — amino acid sequences of (1) apelin-36, (2) apelin-17, (3) apelin-13, and (4) [Pyr1]pyroglutamate-apelin-13. АПФ2 — angiotensin-converting enzyme 2.

Download (562KB)
3. Fig. 2. Apelin and Elabela in ischemia-reperfusion injury and heart failure.

Download (831KB)

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия  ПИ № ФС 77 - 86296 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80632 от 15.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies