DIACYLGLYCERIDES AS NUTRITION COMPONENTS OR PRECURSORS OF CARCINOGENS: A CRITICAL VIEW ON AN AMBULAR QUESTION



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Obesity is recognized as a non-infectious epidemic worldwide. Metabolic disorders associated with the accumulation of adipose tissue lead to the progression of obesity-associated diabetes mellitus and cardiovascular diseases. Diet is one of the components of treatment of the diseases associated with obesity. The most commonly used diets are caloric restriction by reducing fat in the diet. Over the past few decades, there have been many attempts to use diacylglycerol (DAG) as components of dietary oils. This was due to the ability of DAG to suppress the accumulation of visceral fat, to reduce postprandial levels of triacylglycerol and cholesterol, and glucose in the blood serum. However, in 2009 it was found that when oil was processed at high temperatures during physical refining, DAG-enriched oil had the highest levels of potentially harmful glycidol esters (GE) compared to conventional refined fats and oils. The study of the negative effects of GE has prompted the food industry, which has traditionally used oil, to focus on strategies to prevent or mitigate these effects by changing the refining process or modifying deodorization equipment to reduce or eliminate process contaminants.

Full Text

Restricted Access

About the authors

Andrey V. Budnevsky

Voronezh State Medical University named after N.N. Burdenko

Email: budnev@list.ru
ORCID iD: 0000-0002-1171-2746
SPIN-code: 7381-0612
ResearcherId: L-7459-2016

MD, PhD, ScD, Professor, Head of the Department of Faculty Therapy, Vice-Rector for Scientific and Innovation Activities 

Russian Federation, 10, Studencheskaya st., Voronezh, 394036, Russia

Evgeniy S. Ovsyannikov

Voronezh State Medical University named after N.N. Burdenko

Email: ovses@yandex.ru
ORCID iD: 0000-0002-8545-6255
SPIN-code: 7999-0433

MD, PhD, ScD, Professor, Department of Faculty therapy

Russian Federation, 10, Studencheskaya st., Voronezh, 394036, Russia

Valery I. Popov

Voronezh State Medical University named after N.N. Burdenko

Email: 9038504004@mail.ru
ORCID iD: 0000-0001-5386-9082
SPIN-code: 8896-9019

MD, PhD, ScD, Corresponding Member of RAS, Professor, Head of the Department of General Hygiene

Russian Federation, 10, Studencheskaya st., Voronezh, 394036, Russia

Elena S. Drobysheva

Voronezh State Medical University named after N.N. Burdenko

Email: e.drobysheva76@mail.ru
ORCID iD: 0000-0003-2132-8374
SPIN-code: 5342-2742

MD, PhD, Associate professor, Department of Faculty Therapy

Russian Federation, 10, Studencheskaya st., Voronezh, 394036, Russia

Sofia N. Feigelman

Voronezh State Medical University named after N.N. Burdenko

Author for correspondence.
Email: s.feygelman@gmail.com
ORCID iD: 0000-0003-4128-6044
SPIN-code: 1645-1203

Assistant, Department of Faculty Therapy

Russian Federation, 10, Studencheskaya st., Voronezh, 394036, Russia

References

  1. Dedov II, Shestakova MV, Melnichenko GA, et al. Interdisciplinary clinical practice guidelines “Management of obesity and its comorbidities”. Obesity and metabolism. 2021;18(1):5 – 99. (In Russ). doi: 10.14341/omet12714.
  2. Leskova IV, Ershova EV, Nikitina EA, et al. Obesity in Russia: modern view in the light of a social problems. Obesity and metabolism. 2019;16(1):20–26. doi: 10.14341/omet9988.
  3. Durrer Schutz D, Busetto L, Dicker D et al. European Practical and Patient-Centred Guidelines for Adult Obesity Management in Primary Care. Obesity Facts. 2019;12(1):40 – 66. doi: 10.1159/000496183.
  4. Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS Guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation. 2014;129(25):102-138. doi: 10.1161/01.cir.0000437739.71477.ee.
  5. Saito S, Fukuhara I, Osaki N, et al. Consumption of alpha-linolenic acid-enriched diacylglycerol reduces visceral fat area in overweight and obese subjects: a randomized, double-blind controlled, parallel- group designed trial. Journal of Oleo Science. 2016;65(7):603 – 611. doi: 10.5650/jos.ess16059.
  6. Zheng J-S, Wang L, Lin M, et al. BMI status influences the response of insulin sensitivity to diacylglycerol oil in Chinese type 2 diabetic patients. Asia Pac J Clin Nutr. 2015;24(1):65 – 72. doi: 10.6133/apjcn.2015.24.1.01.
  7. Hideto T. Metabolism of diacylglycerol in humans. Asia Pacific Journal of Clinical Nutrition. 2007;16(1):398 – 403. doi: 10.6133/apjcn.2007.16.s1.72.
  8. Masukawa Y, Shiro H, Nakamura S, et al. A new analytical method for the quantification of glycidol fatty acid esters in edible oils. Journal of Oleo Science. 2010;59(2):81 – 88. doi: 10.5650/jos.59.81.
  9. Matsuo N. Nutritional characteristics and health benefits of diacylglycerol in foods. Food Science and Technology Research. 2004;10(2):103 -110. doi: 10.3136/fstr.10.103.
  10. Taguchi H, Watanabe H, Onizawa K et al. Double-Blind controlled study on the effects of dietary diacylglycerol on postprandial serum and chylomicron triacylglycerol responses in healthy humans. Journal of the American College of Nutrition. 2000;19(6):789 – 796. doi: 10.1080/07315724.2000.10718079.
  11. Taguchi H, Omachi T, Nagao T, et al. Dietary diacylglycerol suppresses high fat diet-induced hepatic fat accumulation and microsomal triacylglycerol transfer protein activity in rats. The Journal of Nutritional Biochemistry. 2002;13(11):678 – 683. doi: 10.1016/S0955-2863(02)00212-7.
  12. Dhara R, Dhar P, Ghosh M. Dietary effects of diacylglycerol rich mustard oil on lipid profile of normocholesterolemic and hypercholesterolemic rats. J Food Sci Technol. 2013;50(4):678 – 86. doi: 10.1007/s13197-011-0388-y.
  13. Tang TK, Beh BK, Alitheen NBM, et al. Suppression of visceral adipose tissue by palm kernel and soy-canola diacylglycerol in C57BL/6N mice. European Journal of Lipid Science and Technology. 2013;115(11):1266 – 1273. doi: 10.1002/ejlt.201300111.
  14. Prabhavathi Devi BLA, Gangadhar KN, Prasad RBN, et al. Nutritionally enriched 1,3-diacylglycerol-rich oil: low calorie fat with hypolipidemic effects in rats. Food Chemistry. 2018;248(1):210 – 216. doi: 10.1016/j.foodchem.2017.12.066.
  15. Anikisetty M, Gopala Krishna AG, Panneerselvam V, Kamatham AN. Diacylglycerol (DAG) rich rice bran and sunflower oils modulate lipid profile and cardiovascular risk factors in Wistar rats. J of Functional Foods. 2018;40(1):117 – 127. doi: 10.1016/j.jff.2017.10.049.
  16. Ando Y, Saito S, Yamanaka N, et al. Alpha linolenic acid-enriched diacylglycerol consumption enhances dietary fat oxidation in healthy subjects: a randomized double-blind controlled trial. J of Oleo Science. 2017;66(2):181 – 185. doi: 10.5650/jos.ess16183.
  17. Murase T, Aoki M, Tokimitsu I. Supplementation with a-linolenic acid-rich diacylglycerol suppresses fatty liver formation accompanied by an up-regulation of b-oxidation in zucker fatty rats. Biochimica et Biophysica Acta. 2005;1733(2):224 – 31. doi: 10.1016/j.bbalip.2004.12.015.
  18. Yasukawa T, Yasunaga K. Nutritional functions of dietary diacylglycerols. Journal of Oleo Science. 2001;50(5):427 – 32. doi: 10.5650/ jos.50.427.
  19. Maki KC, Davidson MH, Tsushima R, et al. Consumption of diacylglycerol oil as part of a reduced-energy diet enhances loss of body weight and fat in comparison with consumption of a triacylglycerol control oil. The American Journal of Clinical Nutrition. 2002;76(6):1230 – 1236. doi: 10.1093/ajcn/76.6.1230.
  20. Saito S, Fukuhara I, Osaki N, et al. Consumption of alpha-linolenic acid-enriched diacylglycerol reduces visceral fat area in overweight and obese subjects: a randomized, double-blind controlled, parallel-group designed trial. Journal of Oleo Science. 2016;65(7):603 – 611. doi: 10.5650/jos.ess16059.
  21. Eom TK, Kong CS, Byun HG, et al. Lipase catalytic synthesis of diacylglycerol from tuna oil and its antiobesity effect in C57BL/6J mice. Process Biochemistry. 2010;45(5):738 – 743. doi: 10.1016/j.procbio.2010.01.012.
  22. Kim H, Choe J-H, Choi JH, et al. Medium-chain enriched diacylglycerol (MCE-DAG) oil decreases body fat mass in mice by increasing lipolysis and thermogenesis in adipose tissue. Lipids. 2017;52(8):665 – 673. doi: 10.1007/s11745-017-4277-7.
  23. Mori Y, Nakagiri H, Kondo H, et al. Dietary diacylglycerol reduces postprandial hyperlipidemia and ameliorates glucose intolerance in otsuka Long-Evans Tokushima fatty (OLETF) rats. Nutrition. 2005;21(9):933 – 939. doi: 10.1016/j.nut.2005.01.009.
  24. Zheng J-S, Wang L, Lin M, et al. BMI status influences the response of insulin sensitivity to diacylglycerol oil in Chinese type 2 diabetic patients. Asia Pac J Clin Nutr. 2015;24(1):65 - 72. doi: 10.6133/apjcn.2015.24.1.01.
  25. Choi HS, Park SJ, Lee ZH, Lim S-K. The effects of a high fat diet containing diacylglycerol on bone in C57BL/6J mice. Yonsei Medical Journal. 2015;56(4):951 – 960. doi: 10.3349/ymj.2015.56.4.951.
  26. Maki KC, Davidson MH, Tsushima R, et al. Consumption of diacylglycerol oil as part of a reduced-energy diet enhances loss of body weight and fat in comparison with consumption of a triacylglycerol control oil. The American Journal of Clinical Nutrition. 2002;76(6):1230 – 1236. doi: 10.1093/ajcn/76.6.1230.
  27. Teramoto T, Watanabe H, Ito K, et al. Significant effects of diacylglycerol on body fat and lipid metabolism in patients on hemodialysis. Clinical Nutrition. 2004;23(5):1122–1126. doi: 10.1016/j.clnu.2004.02.005.
  28. Taguchi H, Nagao T, Watanabe H, et al. Energy value and digestibility of dietary oil containing mainly 1, 3-diacylglycerol are similar to those of triacylglycerol. Lipids. 2001;36(4):379. doi: 10.1007/s11745-001-0731-7.
  29. Flickinger B, Matsuo N. Nutritional characteristics of DAG oil. Lipids. 2003;8(2):129 – 132. doi: 10.1007/s11745-003-1042-8.
  30. Morita O, Soni MG. Safety assessment of diacylglycerol oil as an edible oil: a review of the published literature. Food and Chemical Toxicology. 2009;47(1):9 – 21. doi: 10.1016/j.fct.2008.09.044.
  31. Yasunaga K, Glinsmann WH, Seo Y, et al. Safety aspects regarding the consumption of high-dose dietary diacylglycerol oil in men and women in a double-blind controlled trial in comparison with consumption of a triacylglycerol control oil. Food and Chemical Toxicology. 2004;42(9):1419 – 1429. doi: 10.1016/j.fct.2004.04.003.
  32. Kasamatsu T, Ogura R, Ikeda N, et al. Genotoxicity studies on dietary diacylglycerol (DAG) oil. Food and Chemical Toxicology. 2005;3(2):253 – 260. doi: 10.1016/j.fct.2004.10.001.
  33. Bakhiya N, Abraham K, Gürtler R, et al. Toxicological assessment of 3-chloropropane-1,2-diol and glycidol fatty acid esters in food. Mol. Nutr. Food Res. 2011;55(4):509 – 521. doi: 10.1002/mnfr.201000550.
  34. Masukawa Y, Shiro H, Nakamura S, et al. A new analytical method for the quantification of glycidol fatty acid esters in edible oils. Journal of Oleo Science. 2010;59(2):81 – 88. doi: 10.5650/jos.59.81.
  35. Craft BD, Chiodini A, Garst J, Granvogl M. Fatty acid esters of monochloropropanediol (MCPD) and glycidol in refined edible oils. Food Addit Contam: Part A. 2013;30(1):46 – 51. doi: 10.1080/19440049.2012.709196.
  36. Crews C, Chiodini A, Granvogl M, et al. Analytical approaches for MCPD esters and glycidyl esters in food and biological samples: a review and future perspectives. Food Addit Contam: Part A. 2013;30(1):11 – 45. doi: 10.1080/19440049.2012.720385.
  37. MacMahon S, Begley TH, Diachenko GW. Occurrence of 3-MCPD and glycidyl esters in edible oils in the United States. Food Addit Contam: Part A. 2013;30(1):2081 – 2092. doi: 10.1080/19440049.2013.840805.
  38. Wöhrlin F, Fry H, Lahrssen-Wiederholt M, Preib-Weigert A. Occurrence of fatty acid esters of 3-MCPD, 2-MCPD and glycidol in infant formula. Food Addit Contam: Part A. 2015;32(1):1810 – 1822. doi: 10.1080/19440049.2015.1071497.
  39. Matthäus B, Pudel F, Fehling P, et al. Strategies for the reduction of 3-MCPD esters and related compounds in vegetable oils. Eur J lipid Sci Technol. 2011;113(3):380 – 386. doi: 10.1002/ejlt.201000300.
  40. Inagaki R, Hirai C, Shimamura Y, Masuda S. Formation of glycidol fatty acid esters in meat samples cooked by various methods. J Food Process Technol. 2016;7:1 – 6. doi: 10.4172/2157-7110.1000557.
  41. Swern D, Wieder R, McDonough M, et al. Investigation of fatty acids and derivatives for carcinogenic activity. Cancer Res. 1970;30(4):1037 – 1046.
  42. Van Duuren BL, Katz C, Shimkin MB, et al. Replication of low-level carcinogenic activity bioassays. Cancer Res. 1972;32(4):880 – 881.
  43. Ikeda N, Fujii K, Sarada M, et al. Genotoxicity studies of glycidol fatty acid ester (glycidol linoleate) and glycidol. Food Chem Toxicol. 2012;50(11):3927 – 3933. doi: 10.1016/j.fct.2012.08.022.
  44. Glycidol. International agency for research on cancer (IARC). Monographs on the evaluation of carcinogenic risks to humans [Internet]. Lyon, France. 2000. Vol. 77:469–486 [cited 2024 Feb 21] Available from: http://monographs.iarc.fr/ENG/Monographs/vol77/mono77-19.pdf.
  45. Honda H, Fujii K, Yamaguchi T, et al. Glycidol exposure evaluation of humans who have ingested diacylglycerol oil containing glycidol fatty acid esters using hemoglobin adducts. Food and Chemical Toxicology. 2012;50(11):4163 – 4168. doi: 10.1016/j.fct.2012.07.058.
  46. Honda H, Kawamoto T, Doi Y, et al. Alpha-linolenic acid-enriched diacylglycerol oil does not promote tumor development in tongue and gastrointestinal tract tissues in a medium-term multi-organ carcinogenesis bioassay using male F344 rat. Food and Chemical Toxicology. 2017;106:185 – 192. doi: 10.1016/j.fct.2017.04.040.
  47. Bushita H, Ito Y, Saito T, et al. A 90-day repeated-dose toxicity study of dietary alpha linolenic acid-enriched diacylglycerol oil in rats. Regulatory Toxicology and Pharmacology. 2018;97(1):33 – 47. doi: 10.1016/j.yrtph.2018.05.017.
  48. EUR-lex [Internet]. Commission regulation (EU) 2018/290 amending Regulation (EC) No 1881/2006 as regards maximum levels of glycidyl fatty acid esters in vegetable oils and fats, infant formula, follow-on formula and foods for special medical purposes intended for infants and young children [cited 2024 Feb 21]. Available from: http://data.europa.eu/eli/reg/2018/290/oj.
  49. Makarenko MA, Malinkin AD, Bessonov VV, Bokov DO. Alkaline transesterification CG-MS/MS method of monochlorpropanediol and glycidyl esters' determination in some edible fats, oils and fat blends on Russian market. Vopr Pitan. 2020;89(6):113 – 112. (In Russ). doi: 10.24411/0042-8833-2020-10084.
  50. Makarenko MA, Malinkin AD, Bokov DO, Bessonov VV. Monochloropropanediols, glycidol and their esters in children’s nutrition. Vopr. det. dietol. (Pediatric Nutrition). 2019;17(1):38 – 48. (In Russ). doi: 10.20953/1727-5784-2019-1-38-48.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия  ПИ № ФС 77 - 86296 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80632 от 15.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies