Interrelation between gut microbiota and bronchial asthma

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Bronchial asthma is a chronic disease of the respiratory tract, and its etiology and pathogenesis have not been studied adequately. Many authors suggest that intestinal microbiota significantly contributed to its etiology. The existence of a gut–lung connection, through which bacterial metabolites influence airway sensibilization, has been proven. Certainly, the formation of this connection in childhood is important. This study provides a review of indigenous and foreign studies concerning the influence of the quantitative and qualitative compositions of intestinal microbiota and certain metabolites of commensals on the manifestation of bronchial asthma. This topic is relevant because of the widespread overuse of antibiotic therapy and the availability of possible ways to prevent the development of bronchial asthma if the influence of the microbiota on its pathogenesis is detected.

This study also tried to examine the influence of antibiotic therapy on pregnant women and young children at risk of bronchial asthma, a relationship confirmed in many studies. Despite the large number of studies, the use of probiotics for the treatment and prevention of this disease is still debatable.

全文:

受限制的访问

作者简介

Anastasia Potaman

Academician I.P. Pavlov First St. Petersburg State Medical University

编辑信件的主要联系方式.
Email: mpsakura@yandex.ru
ORCID iD: 0009-0001-5433-1783
俄罗斯联邦, Saint Petersburg

Polina Pyatysheva

Academician I.P. Pavlov First St. Petersburg State Medical University

Email: polina.pyatysheva@gmail.com
ORCID iD: 0009-0003-1079-2558
俄罗斯联邦, Saint Petersburg

Ksenia Plotnikova

Academician I.P. Pavlov First St. Petersburg State Medical University

Email: missis.plotnikova-xiusha@yandex.ru
ORCID iD: 0009-0008-3045-8764
俄罗斯联邦, Saint Petersburg

Maria-Mishel Kobak

St. Petersburg State Pediatric Medical University

Email: mariamishelkobak@gmail.com
ORCID iD: 0009-0006-2683-8348
SPIN 代码: 4955-4997
俄罗斯联邦, Saint Petersburg

Ahmed Abdusalamov

Military Medical Academy named after S.M. Kirov

Email: abdusalamoff.13@mail.ru
ORCID iD: 0009-0005-0652-1469
SPIN 代码: 7907-3271
俄罗斯联邦, Saint Petersburg

Kirill Raevskiy

Military Medical Academy named after S.M. Kirov

Email: raevskiykirill17@gmail.com
ORCID iD: 0000-0002-9939-3443
SPIN 代码: 9133-3802
俄罗斯联邦, Saint Petersburg

参考

  1. https://www.who.int/ru/ [Internet]. World Health Organization. Asthma [updated 2023 May 4; cited 2024 Feb 8]. Available from: https://www.who.int/ru/news-room/fact-sheets/detail/asthma (In Russ).
  2. Holtjer JCS, Bloemsma LD, Beijers RJHCG, et al. Identifying risk factors for COPD and adult-onset asthma: an umbrella review. Eur Respir Rev. 2023;32(168):230009. doi: 10.1183/16000617.0009-2023
  3. Zol’nikova OYu. Microbiota of the intestine and respiratory tract as a pathogenetic link in bronchial asthma [dissertation]. Moscow; 2020. Available from: https://www.dissercat.com/content/mikrobiota-kishechnika-i-dykhatelnykh-putei-kak-patogeneticheskoe-zveno-bronkhialnoi-astmy (In Russ). EDN: JXRZPX
  4. Potskherashvili ND, Zolnikova OYu, Ivashkin VT. The role of the intestinal microbiota in pathogenesis of bronchial asthma. Molecular Medicine. 2022;20(3):11–19. EDN: WBXSVK doi: 10.29296/24999490-2022-03-02
  5. Nora SA, Kropachev IG, Arkhipov GS. Role of microbiotic factor in development of allergic diseases. Vestnik Novsu. 2020;(3):52–55. EDN: KMSSBS doi: 10.34680/2076-8052.2020.3(119).52-55
  6. Akagawa S, Kaneko K. Gut microbiota and allergic diseases in children. Allergol Int. 2022;71(3):301–309. doi: 10.1016/j.alit.2022.02.004
  7. Huang C, Du W, Ni Y, et al. The effect of short-chain fatty acids on M2 macrophages polarization in vitro and in vivo. Clin Exp Immunol. 2022;207(1):53–64. doi: 10.1093/cei/uxab028
  8. Priputnevich TV, Isaeva EL, Muravieva VV, et al. Development of the gut microbiota of term and late preterm newborn infants. Neonatology: News, Views, Education. 2023;11(1):42–56. EDN: DXEIBL doi: 10.33029/2308-2402-2023-11-1-42-56
  9. Barcik W, Pugin B, Brescó MS, et al. Bacterial secretion of histamine within the gut influences immune responses within the lung. Allergy. 2019;74(5):899–909. doi: 10.1111/all.13709
  10. Roduit C, Frei R, Ferstl R, et al. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy. 2019;74(4):799–809. doi: 10.1111/all.13660
  11. Yip W, Hughes MR, Li Y, et al. Butyrate shapes immune cell fate and function in allergic asthma. Front Immunol. 2021;12:628453. doi: 10.3389/fimmu.2021.628453
  12. Bao C. Liu C, Liu Q, et al. Liproxstatin-1 alleviates LPS/IL-13-induced bronchial epithelial cell injury and neutrophilic asthma in mice by inhibiting ferroptosis. Int Immunopharmacol. 2022;109:108770. Corrected and republished from: Int Immunopharmacol. 2023;115:109482. doi: 10.1016/j.intimp.2022.108770
  13. Thorne PS. Environmental endotoxin exposure and asthma. J Allergy Clin Immunol. 2021;148(1):61–63. doi: 10.1016/j.jaci.2021.05.004
  14. Nath S, Kitsios GD, Bos LDJ. Gut-lung crosstalk during critical illness. Curr Opin Crit Care. 2023;29(2):130–137. doi: 10.1097/MCC.0000000000001015
  15. Chunxi L, Haiyue L, Yanxia L, et al. The gut microbiota and respiratory diseases: new evidence. J Immunol Res. 2020;2020:2340670. doi: 10.1155/2020/2340670
  16. Cuna A, Morowitz MJ, Ahmed I, et al. Dynamics of the preterm gut microbiome in health and disease. Am J Physiol Gastrointest Liver Physiol. 2021;320(4):G411–G419. doi: 10.1152/ajpgi.00399.2020
  17. Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7(307):307ra152. doi: 10.1126/scitranslmed.aab2271
  18. Bernatowicz P, Pampuch A, Zywno H, Kowal K. Effect of dermatophagoides pteronyssinus extract on the expression of genes involved in inflammation and tissue remodeling by peripheral blood mononuclear cells of allergic asthma patients. Adv Med Sci. 2022;67(2):234–240. doi: 10.1016/j.advms.2022.05.002
  19. Matalygina ОА. The role of intestinal endotoxin in the formation and course of bronchial asthma. Medicine: Theory and Practice. 2022;7(2):29–37. EDN: VYZTPY doi: 10.56871/2074.2022.95.50.004
  20. Zolnikova OYu, Ivaschkin KV, Bueverova EL, Ivaschkin VT. Intestinal microbiota, nutrients and probiotics viewed from the “gut-lung” axis. Problems of Nutrition. 2019;88(3):13–22. EDN: NGHUZZ doi: 10.24411/0042-8833-2019-10025
  21. Iddrisu I, Monteagudo-Mera A, Poveda C, et al. Malnutrition and gut microbiota in children. Nutrients. 2021;13(8):2727. doi: 10.3390/nu13082727
  22. Zolnikova ОYu, Potskherashvili ND, Kudryavtseva AV. Changes in gut microbiota with bronchial asthma. Terapevticheskii arkhiv. 2020;92(3):56–60. EDN: IUBXRB doi: 10.26442/00403660.2020.03.000554
  23. Galeana-Cadena D, Gómez-García IA, Lopez-Salinas KG, et al. Winds of change a tale of: asthma and microbiome. Front Microbiol. 2023;14:1295215. doi: 10.3389/fmicb.2023.1295215
  24. Wang L, Cai Y, Garssen J, et al. The bidirectional gut-lung axis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2023;207(9):1145–1160. doi: 10.1164/rccm.202206-1066T
  25. Scott NA, Mann ER. Regulation of mononuclear phagocyte function by the microbiota at mucosal sites. Immunology. 2020; 159(1):26–38. doi: 10.1111/imm.13155
  26. von Mutius E, Smits HH. Primary prevention of asthma: from risk and protective factors to targeted strategies for prevention. Lancet. 2020;396(10254):854–866. doi: 10.1016/S0140-6736(20)31861-4
  27. Vercelli D. Microbiota and human allergic diseases: the company we keep. Curr Opin Immunol. 2021;72:215–220. doi: 10.1016/j.coi.2021.06.002
  28. Durack J, Kimes NE, Lin DL, et al. Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation. Nat Commun. 2018;9(1):707. doi: 10.1038/s41467-018-03157-4
  29. Mazurina SA, Gervazieva VB, Sveranovskaya VV. Intestinal microbiota and allergic diseases. Jurnal infektologii. 2020;12(2): 19–29. EDN: KHSKMR doi: 10.22625/2072-6732-2020-12-2-19-29
  30. Cheng RY, Yao JR, Wan Q, et al. Oral administration of Bifidobacterium bifidum TMC3115 to neonatal mice may alleviate IgE-mediated allergic risk in adulthood. Benef Microbes. 2018;9(5): 815–828. doi: 10.3920/BM2018.0005
  31. Zhao Q, Elson CO. Adaptive immune education by gut microbiota antigens. Immunology. 2018;154(1):28–37. doi: 10.1111/imm.12896
  32. Feehley T, Plunkett CH, Bao R, et al. Healthy infants harbor intestinal bacteria that protect against food allergy. Nat Med. 2019;25(3):448–453. doi: 10.1038/s41591-018-0324-z
  33. Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol. 2019;12(4):843–850. doi: 10.1038/s41385-019-0160-6
  34. Kaur K, Bachus H, Lewis C, et al. GM-CSF production by non-classical monocytes controls antagonistic LPS-driven functions in allergic inflammation. Cell Rep. 2021;37(13):110178. doi: 10.1016/j.celrep.2021.110178
  35. Parada Venegas D, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277. Corrected and republished from: Front Immunol. 2019;10:1486. doi: 10.3389/fimmu.2019.00277
  36. Yuan X, Tang H, Wu R, et al. Short-chain fatty acids calibrate rarα activity regulating food sensitization. Front Immunol. 2021;12:737658. doi: 10.3389/fimmu.2021.737658
  37. Miyamoto J, Igarashi M, Watanabe K, et al. Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nat Commun. 2019;10(1):4007. doi: 10.1038/s41467-019-11978-0
  38. Kim S, Lee S, Kim TY, et al. Newly isolated Lactobacillus paracasei strain modulates lung immunity and improves the capacity to cope with influenza virus infection. Microbiome. 2023;11(1):260. doi: 10.1186/s40168-023-01687-8
  39. Esmaeili SA, Hajavi J. The role of indoleamine 2,3-dioxygenase in allergic disorders. Mol Biol Rep. 2022;49(4):3297–3306. doi: 10.1007/s11033-021-07067-5
  40. Su X, Gao Y, Yang R. Gut microbiota-derived tryptophan metabolites maintain gut and systemic homeostasis. Cells. 2022;11(15):2296. doi: 10.3390/cells11152296
  41. Ver Heul A, Planer J, Kau AL. The human microbiota and asthma. Clin Rev Allergy Immunol. 2019;57(3):350–363. doi: 10.1007/s12016-018-8719-7
  42. Hufnagl K, Pali-Schöll I, Roth-Walter F, Jensen-Jarolim E. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin Immunopathol. 2020;42(1):75–93. doi: 10.1007/s00281-019-00775-y
  43. Borbet TC, Zhang X, Müller A, Blaser MJ. The role of the changing human microbiome in the asthma pandemic. J Allergy Clin Immunol. 2019;144(6):1457–1466. doi: 10.1016/j.jaci.2019.10.022
  44. Ozerskaia IV, Geppe NA, Romantseva EV, Yablokova EA. Prospects for the correction of intestinal microbiota in the prevention and treatment of asthma in children. Problems of Nutrition. 2021;90(4):74–83. EDN: AYSVRF doi: 10.33029/0042-8833-2021-90-4-74-83
  45. Makarova SG, Namazova-Baranova LS, Ereshko OA, et al. Intestinal microbiota and allergy. probiotics and prebiotics in prevention and treatment of allergic diseases. Pediatric Pharmacology. 2019;16(1):7–18. EDN: FKACIA doi: 10.15690/pf.v16i1.1999
  46. Wu Z, Mehrabi Nasab E, Arora P, Athari SS. Study effect of probiotics and prebiotics on treatment of OVA-LPS-induced of allergic asthma inflammation and pneumonia by regulating the TLR4/NF-kB signaling pathway. J Transl Med. 2022;20(1):130. doi: 10.1186/s12967-022-03337-3
  47. Uwaezuoke SN, Ayuk AC, Eze JN, et al. Postnatal probiotic supplementation can prevent and optimize treatment of childhood asthma and atopic disorders: a systematic review of randomized controlled trials. Front Pediatr. 2022;10:956141. doi: 10.3389/fped.2022.956141
  48. Ciprandi G, Tosca MA. Probiotics in children with asthma. Children (Basel). 2022;9(7):978. doi: 10.3390/children9070978
  49. Chiu CJ, Huang MT. Asthma in the precision medicine era: biologics and probiotics. Int J Mol Sci. 2021;22(9):4528. doi: 10.3390/ijms22094528
  50. Wawryk-Gawda E, Markut-Miotła E, Emeryk A. Postnatal probiotics administration does not prevent asthma in children, but using prebiotics or synbiotics may be the effective potential strategies to decrease the frequency of asthma in high-risk children — a meta-analysis of clinical trials. Allergol Immunopathol (Madr). 2021;49(4):4–14. doi: 10.15586/aei.v49i4.69
  51. Martinelli M, Banderali G, Bobbio M, et al. Probiotics’ efficacy in paediatric diseases: which is the evidence? A critical review on behalf of the Italian Society of Pediatrics. Ital J Pediatr. 2020;46(1):104. Corrected and republished from: Ital J Pediatr. 2020;46(1):116. doi: 10.1186/s13052-020-00862-z
  52. Colquitt AS, Miles EA, Calder PC. Do probiotics in pregnancy reduce allergies and asthma in infancy and childhood? A systematic review. Nutrients. 2022;14(9):1852. doi: 10.3390/nu14091852
  53. Chen N, Liu F, Gao Q, et al. A meta-analysis of probiotics for the treatment of allergic airway diseases in children and adolescents. Am J Rhinol Allergy. 2022;36(4):480–490. Corrected and republished from: Am J Rhinol Allergy. 2023:19458924231205963. doi: 10.1177/19458924221080159

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия  ПИ № ФС 77 - 86296 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80632 от 15.03.2021 г
.



##common.cookie##