Interrelation between gut microbiota and bronchial asthma



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This article is a review of indigenous and foreign literature concerning the influence of the quantitative and qualitative composition of intestinal microbiota, as well as certain metabolites of bacteria-commensals, on the manifestation of bronchial asthma. This topic is particularly relevant nowadays due to the widespread overuse of antibiotic therapy, and additionally, the availability of possible ways to prevent the manifestation of this disease if the influence of the microbiota on the pathogenesis of bronchial asthma is detected. Bronchial asthma is a chronic disease of the respiratory tract with insufficiently studied etiology and pathogenesis. Many authors suggest a significant contribution of intestinal microbiota to the etiology of this pathology. The existence of a gut-lung axis, through which bacterial metabolites influence airway sensibilization, has been proven. Certainly, forming this connection in childhood plays an important role.

Of particular interest is the question of the influence of antibiotic therapy on pregnant women and young children at the risk of bronchial asthma, a relationship confirmed in many studies. However, despite the large number of articles, the use of probiotics for the treatment and prevention of this disease is still debatable.

Full Text

Restricted Access

About the authors

Anastasia M. Potaman

Federal State Budgetary Educational Institution of Higher Education Academician I.P. Pavlov First St. Petersburg State Medical University of the Ministry of Healthcare of Russian Federation

Author for correspondence.
Email: mpsakura@yandex.ru
ORCID iD: 0009-0001-5433-1783

студент

Russian Federation, 6-8 L’va Tolstogo street, 197022, Saint – Petersburg, Russia

Polina A. Pyatysheva

Federal State Budgetary Educational Institution of Higher Education Academician I.P. Pavlov First St. Petersburg State Medical University of the Ministry of Healthcare of Russian Federation

Email: polina.pyatysheva@gmail.com
ORCID iD: 0009-0003-1079-2558

студент

Russian Federation

Ksenia A. Plotnikova

Federal State Budgetary Educational Institution of Higher Education Academician I.P. Pavlov First St. Petersburg State Medical University of the Ministry of Healthcare of Russian Federation

Email: missis.plotnikova-xiusha@yandex.ru
ORCID iD: 0009-0008-3045-8764

студент

Russian Federation

Maria-Mishel M. Kobak

Saint-Petersburg State Pediatric Medical University

Email: mariamishelkobak@gmail.com
ORCID iD: 0009-0006-2683-8348
SPIN-code: 4955-4997

студент

Russian Federation

Ahmed R. Abdusalamov

Kirov Military medical academy

Email: abdusalamoff.13@mail.ru
ORCID iD: 0009-0005-0652-1469
SPIN-code: 7907-3271

студент

Russian Federation

Kirill P. Raevskiy

Kirov Military medical academy

Email: raevskiykirill17@gmail.com
ORCID iD: 0000-0002-9939-3443
SPIN-code: 9133-3802
Scopus Author ID: 57768476700

ординатор второго года обучения по специальности "Кардиология"

Russian Federation

References

  1. World Health Organization [Internet]. Asthma [updated 2023 May 4; cited 2024 Feb 8]. Available from: https://www.who.int/ru/news-room/fact-sheets/detail/asthma. Accessed: Feb 8, 2024. (In Russ).
  2. Holtjer JCS, Bloemsma LD, Beijers RJHCG, et al. Identifying risk factors for COPD and adult-onset asthma: an umbrella review. European Respiratory Review. 2023 May;32(168):230009. Available from: https: https://err.ersjournals.com/content/32/168/230009. doi: 10.1183/16000617.0009-2023
  3. Zol'nikova OYu. Microbiota of the intestine and respiratory tract as a pathogenetic link in bronchial asthma [dissertation]. Moscow; 2020. Available from: https://www.dissercat.com/content/mikrobiota-kishechnika-i-dykhatelnykh-putei-kak-patogeneticheskoe-zveno-bronkhialnoi-astmy. (In Russ).
  4. Potskherashvili ND, Zolnikova OYu, Ivashkin VT. The role of the intestinal microbiota in pathogenesis of bronchial asthma. Molekulyarnaya meditsina. 2022;20(3):11-19. (in Russ). doi: 10.29296/24999490-2022-03-02.
  5. Nora SA, Kropachev IG, Arkhipov GS. Role of microbiotic factor in development of allergic diseases. Vestnik Novgorodskogo gosudarstvennogo universiteta imeni Yaroslava Mudrogo. 2020;3(119):52-55. (in Russ).
  6. Akagawa S, Kaneko K. Gut microbiota and allergic diseases in children. Allergology international: official journal of the Japanese Society of Allergology. 2022;71(3):301-309. doi: 10.1016/j.alit.2022.02.004
  7. Huang C, Du W, Ni Y, Lan G, Shi G. The effect of short-chain fatty acids on M2 macrophages polarization in vitro and in vivo. Clinical and experimental immunology, 2022;207(1):53–64. doi: 10.1093/cei/uxab028
  8. Priputnevich TV, Isaeva EL, Muravieva VV, et al. Development of the gut microbiota of term and late preterm newborn infants. Neonatology: News, Opinions, Training. 2023;11(1):42-56. (in Russ). doi: https://doi.org/10.33029/2308-2402-2023-11-1-42-56
  9. Barcik W, Pugin B, Brescó MS, et al. Bacterial secretion of histamine within the gut influences immune responses within the lung. Allergy. 2019;74(5):899-909. doi: 10.1111/all.13709
  10. Roduit C, Frei R, Ferstl R, et al. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy. 2019;74(4):799-809. doi: 10.1111/all.13660
  11. Yip W, Hughes MR, Li Y, et al. Butyrate Shapes Immune Cell Fate and Function in Allergic Asthma. Frontiers in Immunology. 2021;15(12):628453. doi: 10.3389/fimmu.2021.628453
  12. Bao C. Liu C, Liu Q, et al. Liproxstatin-1 alleviates LPS/IL-13-induced bronchial epithelial cell injury and neutrophilic asthma in mice by inhibiting ferroptosis. International Immunopharmacology. 2022;109:108770. doi: 10.1016/j.intimp.2022.108770
  13. Thorne PS. Environmental endotoxin exposure and asthma. The Journal of allergy and clinical immunology. 2021;148(1):61–63. doi: 10.1016/j.jaci.2021.05.004
  14. Nath S, Kitsios GD, Bos LDJ. Gut-lung crosstalk during critical illness. Current Opinion in Critical Care. 2023; 29(2):130-137. doi: 10.1097/MCC.0000000000001015
  15. Chunxi L, Haiyue L, Yanxia L, Jianbing P, Jin S. The Gut Microbiota and Respiratory Diseases: New Evidence. Journal of Immunology Research. 2020;2020:2340670. doi: 10.1155/2020/2340670
  16. Cuna A, Morowitz MJ, Ahmed I, Umar S, Sampath V. Dynamics of the preterm gut microbiome in health and disease. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2021;320(4):411-419. doi: 10.1152/ajpgi.00399.2020
  17. Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science translational medicine. 2015;7(307):307. doi: 10.1126/scitranslmed.aab2271
  18. Bernatowicz P, Pampuch A, Zywno H, Kowal K Effect of Dermatophagoides pteronyssinus extract on the expression of genes involved in inflammation and tissue remodeling by peripheral blood mononuclear cells of allergic asthma patients. Advances in Medical Sciences. 2022;67(2):234-240. doi: 10.1016/j.advms.2022.05.002
  19. Matalygina ОА. The role of intestinal endotoxin in the formation and course of bronchial asthma. Meditsina: teoriya i praktika. 2022;7(2);29-37. (in Russ). doi: 10.56871/2074.2022.95.50.004
  20. Zolnikova OYu, Ivaschkin KV, Bueverova EL, Ivaschkin VT. Intestinal microbiota, nutrients and probiotics viewed from the "gut-lung" axis. Voprosy pitaniya. 2020;88(3);13-22. (in Russ). doi: 10.24411/0042-8833-2019-10025
  21. Iddrisu I, Monteagudo-Mera A, Poveda C, et al. Malnutrition and Gut Microbiota in Children. Nutrients. 2021;13(8):2727. doi: 10.3390/nu13082727
  22. Zolnikova ОYu, Potskherashvili ND, Kudryavtseva AV. Changes in gut microbiota with bronchial asthma. Therapeutic Archive. 2020;92(3):56-60. (in Russ). doi: 10.26442/00403660.2020.03.000554
  23. Galeana-Cadena D, Gómez-García IA, Lopez-Salinas KG, et al. Winds of change a tale of: asthma and microbiome. Frontiers in Microbiology. 2023;11(14):1295215. doi: 10.3389/fmicb.2023.1295215
  24. Wang L, Cai Y, Garssen J, Henricks PAJ, Folkerts G, Braber S. The Bidirectional Gut-Lung Axis in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine. 2023;207(9):1145-1160. doi: 10.1164/rccm.202206-1066TR
  25. Scott NA, Mann ER. Regulation of mononuclear phagocyte function by the microbiota at mucosal sites. Immunology. 2020;159(1):26-38. doi: 10.1111/imm.13155
  26. von Mutius E, Smits HH. Primary prevention of asthma: from risk and protective factors to targeted strategies for prevention. Lancet. 2020;396(10254):854-866. doi: 10.1016/S0140-6736(20)31861-4
  27. Vercelli D. Microbiota and human allergic diseases: the company we keep. Current Opinion in Immunology. 2021;72:215-220. doi: 10.1016/j.coi.2021.06.002
  28. Durack J, Kimes NE, Lin DL, et al. Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation. Nature Communications. 2018;9(1):707. doi: 10.1038/s41467-018-03157-4
  29. Mazurina SA, Gervazieva VB, Sveranovskaya VV. Intestinal microbiota and allergic diseases. Journal Infectology. 2020;12(2):19-29. (In Russ). doi: 10.22625/2072-6732-2020-12-2-19-29
  30. Cheng RY, Yao JR, Wan Q, et al. Oral administration of Bifidobacterium bifidum TMC3115 to neonatal mice may alleviate IgE-mediated allergic risk in adulthood. Beneficial Microbes. 2018;9(5):815-828. doi: 10.3920/BM2018.0005
  31. Zhao Q, Elson CO. Adaptive immune education by gut microbiota antigens. Immunology. 2018;154(1):28-37. doi: 10.1111/imm.12896
  32. Feehley T, Plunkett CH, Bao R, et al. Healthy infants harbor intestinal bacteria that protect against food allergy. Nature Medicine. 2019;25(3):448-453. doi: 10.1038/s41591-018-0324-z
  33. Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal Immunology. 2019 Jul;12(4):843-850. doi: 10.1038/s41385-019-0160-6. Epub 2019 Apr 11. PMID: 30976087.
  34. Kaur K, Bachus H, Lewis C, et al. GM-CSF production by non-classical monocytes controls antagonistic LPS-driven functions in allergic inflammation. Cell Reports. 2021;37(13):110178. doi: 10.1016/j.celrep.2021.110178
  35. Roduit C, Frei R, Ferstl R, Loeliger S, et al.; PASTURE/EFRAIM study group. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy. 2019;74(4):799-809. doi: 10.1111/all.13660
  36. Parada Venegas D, De la Fuente MK, Landskron G, et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Frontiers in Immunology. 2019;10:277. doi: 10.3389/fimmu.2019.00277
  37. Yuan X, Tang H, Wu R, et al. Short-Chain Fatty Acids Calibrate RARα Activity Regulating Food Sensitization. Frontiers in Immunology. 2021;12:737658. doi: 10.3389/fimmu.2021.737658
  38. Miyamoto J, Igarashi M, Watanabe K, et al. Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nature Communications. 2019;10(1):4007. doi: 10.1038/s41467-019-11978-0
  39. Kim S, Lee S, Kim TY, Lee SH, Seo SU, Kweon MN. Newly isolated Lactobacillus paracasei strain modulates lung immunity and improves the capacity to cope with influenza virus infection. Microbiome. 2023;11(1):260. doi: 10.1186/s40168-023-01687-8
  40. Esmaeili SA, Hajavi J. The role of indoleamine 2,3-dioxygenase in allergic disorders. Molecular Biology Reports. 2022;49(4):3297-3306. doi: 10.1007/s11033-021-07067-5
  41. Su X, Gao Y, Yang R. Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis. Cells. 2022;11(15):2296. doi: 10.3390/cells11152296
  42. Ver Heul A, Planer J, Kau AL. The Human Microbiota and Asthma. Clinical Reviews in Allergy & Immunology. 2019;57(3):350-363. doi: 10.1007/s12016-018-8719-7
  43. Hufnagl K, Pali-Schöll I, Roth-Walter F, Jensen-Jarolim E. Dysbiosis of the gut and lung microbiome has a role in asthma. Seminars in Immunopathology. 2020;42(1):75-93. doi: 10.1007/s00281-019-00775-y
  44. Borbet TC, Zhang X, Müller A, Blaser MJ. The role of the changing human microbiome in the asthma pandemic. Journal of Allergy and Clinical Immunology. 2019;144(6):1457-1466. doi: 10.1016/j.jaci.2019.10.022
  45. Ozerskaia IV, Geppe NA, Romantseva EV, Yablokova EA. Prospects for the correction of intestinal microbiota in the prevention and treatment of asthma in children. Problems of Nutrition. 2021;90(4):74-83. (in Russ). doi: 10.33029/0042-8833-2021-90-4-74-83
  46. Makarova SG, Namazova-Baranova LS, Ereshko OA, Yasakov DS, Sadchikov PE. Intestinal Microbiota and Allergy. Probiotics and Prebiotics in Prevention and Treatment of Allergic Diseases. Pediatric pharmacology. 2019;16(1):7-18. (In Russ). doi: 10.15690/pf.v16i1.1999
  47. Wu Z, Mehrabi Nasab E, Arora P, Athari SS. Study effect of probiotics and prebiotics on treatment of OVA-LPS-induced of allergic asthma inflammation and pneumonia by regulating the TLR4/NF-kB signaling pathway. Journal of Translational Medicine. 2022;20(1):130. doi: 10.1186/s12967-022-03337-3
  48. Uwaezuoke SN, Ayuk AC, Eze JN, Odimegwu CL, Ndiokwelu CO, Eze IC. Postnatal probiotic supplementation can prevent and optimize treatment of childhood asthma and atopic disorders: A systematic review of randomized controlled trials. Frontiers in Pediatrics. 2022;10:956141. doi: 10.3389/fped.2022.956141
  49. Ciprandi G, Tosca MA. Probiotics in Children with Asthma. Children. 2022;9(7):978. doi: 10.3390/children9070978
  50. Chiu CJ, Huang MT. Asthma in the Precision Medicine Era: Biologics and Probiotics. International Journal of Molecular Sciences. 2021;22(9):4528. doi: 10.3390/ijms22094528
  51. Wawryk-Gawda E, Markut-Miotła E, Emeryk A. Postnatal probiotics administration does not prevent asthma in children, but using prebiotics or synbiotics may be the effective potential strategies to decrease the frequency of asthma in high-risk children - a meta-analysis of clinical trials. Allergologia et Immunopathologia. 2021;49(4):4-14. doi: 10.15586/aei.v49i4.69
  52. Martinelli M, Banderali G, Bobbio M, et al. Probiotics' efficacy in paediatric diseases: which is the evidence? A critical review on behalf of the Italian Society of Pediatrics. Italian Journal of Pediatrics. 2020;46(1):104. doi: 10.1186/s13052-020-00862-z
  53. Colquitt AS, Miles EA, Calder PC. Do Probiotics in Pregnancy Reduce Allergies and Asthma in Infancy and Childhood? A Systematic Review. Nutrients. 2022;14(9):1852. doi: 10.3390/nu14091852
  54. Chen N, Liu F, Gao Q, Wang R, Zhang L, Li Y. A Meta-Analysis of Probiotics for the Treatment of Allergic Airway Diseases in Children and Adolescents. American Journal of Rhinology & Allergy. 2022;36(4):480-490. doi: 10.1177/19458924221080159

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия  ПИ № ФС 77 - 86296 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80632 от 15.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies