Stability of solutions to the logistic equation with delay, diffusion and nonclassical boundary conditions

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The work is devoted to the logistic equation with delay and diffusion with non-classical boundary conditions. The stability of a nontrivial equilibrium state is investigated, and the resulting bifurcations are studied numerically.

Авторлар туралы

I. Kashchenko

P. G. Demidov Yaroslavl State University

Хат алмасуға жауапты Автор.
Email: iliyask@uniyar.ac.ru

Regional Scientific and Educational Mathematical Center of Yaroslavl State University

Ресей, Yaroslavl

S. Kashchenko

P. G. Demidov Yaroslavl State University

Email: kasch@uniyar.ac.ru

Regional Scientific and Educational Mathematical Center of Yaroslavl State University

Ресей, Yaroslavl

I. Maslenikov

P. G. Demidov Yaroslavl State University

Email: igor.maslenikov16@yandex.ru

Regional Scientific and Educational Mathematical Center of Yaroslavl State University

Ресей, Yaroslavl

Әдебиет тізімі

  1. Wu J. Theory and applications of partial functional differential equations. New York: Springer-Verlag, 1996.
  2. Cushing J. M. Integrodifferential equations and delay models in population dynamics. Springer, 1977.
  3. Kuang Y. Delay differential equations: with applications in population dynamics. Academic Press, 1993.
  4. Murray J.D. Mathematical biology II: Spatial models and biomedical applications. New York : Springer, 2001. V. 3.
  5. Gourley S.A., So J.W-H., Wu J.H. Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics // Journal of Mathematical Sciences. 2004. V. 124. P. 5119–5153.
  6. Кащенко С.А., Логинов Д.О. Бифуркации при варьировании граничных условий в логистическом уравнении с запаздыванием и диффузией // Математические заметки. 2019. Т. 106. № 1. С. 138–143.
  7. Wright E.M. A non-linear difference-differential equation // J. fur die reine und angewandte Math. (Crelles Journal). 1955. V. 194. P. 66–87.
  8. Кащенко С.А. Динамика моделей на основе логистического уравнения с запаздыванием. М.: КРАСАНД, 2020.
  9. Кащенко С.А. , Толбей А.О. Бифуркации в логистическом уравнении с диффузией и запаздыванием в граничном условии // Матем. заметки. 2023. Т. 113. № 6. С. 940–944.
  10. Rudyi A.S. Theoretical fundamentals of the method for thermal diffusivity measurements from auto-oscillation parameters in a system with a thermal feedback // International J. of Thermophysics. 1993. V. 14. P. 159–172.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024